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Abstract. We present top-down global gridded emissions of NOx for the year 2022. This dataset is constructed8

from retrievals of tropospheric vertical column densities of NO2 by the TROPOMI spaceborne instrument associated9

with winds and atmospheric composition data from ECMWF reanalyses, using an improved version of a mass-balance10

atmospheric inversion. The emissions are provided with a spatial resolution of 0.0625°×0.0625° and deliver a detailed11

overview of the distribution of emissions. They allow the identification of intense area sources and isolated emitters,12

and the quantification of their associated emissions. At global level, the emissions obtained are consistent with the13

EDGARv6.1 bottom-up inventory, although there are differences at regional level, particularly in emerging countries14

and countries with low observation densities. The three largest emitting countries, China, the United States and15

India, are 11, 16 and 6% lower than EDGAR estimates. Uncertainties remain high, and a quantitative analysis of16

emissions over several averaging periods indicates that averaging emissions uniformly across the year may be sufficient17

to obtain estimates consistent with annual averages, in regions of the world with high retrieval densities. This dataset18

is designed to be updated with a low latency to help policymakers monitor emissions and implement energy savings19

and clean air quality policies. The data can be accessed at https://doi.org/10.5281/zenodo.13957837 as monthly20

files (Rey-Pommier et al., 2024).21

22

1 Introduction23

Air pollution is one of the leading causes of premature death in the world. Public health policies, implemented24

at the scale of countries, regions or cities, often aim to reduce the exposure to several pollutants, such as nitrogen25

oxides (NOx = NO+NO2). Such mitigation plans therefore require a precise knowledge of the emitters, as well as26

a monitoring of their emission levels over time. Data on NOx emissions is therefore fundamental for monitoring the27

implementation of air quality policies. Besides, because NOx is mainly produced during the combustion of carbon fuels28

at high temperatures, such data can also be a tool to measure progress towards carbon neutrality. Gridded emissions29

with high spatial and temporal resolution are therefore of great scientific and political value. Many of such datasets30

are emission inventories, i.e. bottom-up models in which emissions are calculated on the basis of known sectoral31

activities and allocated in time and space, combined with specific emission factors by sector and, possibly, by country.32

These inventories provide valuable information on long-term trends and large-scale emission budgets, but they suffer33

from several weaknesses. They hardly represent daily or weekly variations, their activity data may be outdated, and34

some sources may be misallocated or unknown, which is common in many developing countries. Besides, uncertainties35

surrounding rapidly changing emissions factors and the generally low temporal resolution of activity data limits, in36

certain circumstances, the realism of such bottom-up inventories. Finally, they have a data lag of at least one year,37

which limits their potential as monitoring tools.38

In this context, increasing efforts have been made to overcome the weaknesses of the inventories in order to39

obtain independent emission datasets that are homogeneous from one country to another. Such datasets are of the40

top-down type: they use direct observations of pollution and result from the inversion of an atmospheric chemistry-41

transport model (CTM) in which these atmospheric observations are assimilated. The observation data may be in-situ42

measurements or satellite retrievals.43
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In previous studies, we used a method for detecting and quantifying NOx emissions from daily observations of NO244

columns by the TROPOMI instrument, onboard the Sentinel 5P instrument. This method, developed for the countries45

of the Eastern Mediterranean and Middle East region, is based on a two-dimensional simplification of atmospheric46

chemistry and transport, and does not require the direct use of a full 3D chemistry-transport model. Here, we extend47

the emissions domain to the whole world for the year 2022, and provide a dataset of averaged NOx emissions at48

a resolution of 0.0625°×0.0625°. We analyse the results by pinpointing emitters and distinguishing between point49

sources, generally corresponding to isolated industrial facilities, and diffuse/area sources, generally corresponding to50

megacities. We also compare the results with the bottom-up inventory EDGARv6.1 and assess their reliability using51

different average horizons.52

This article is structured as follows: Section 2 details the method used throughout this study, its improvements53

and simplifications since its previous uses, and the input data in its implementation. Section 3 presents the global54

NOx emissions dataset and analyses the different types of emitters. It also compares the results obtained with the55

EDGARv6.1 bottom-up inventory, and analyses different time horizons for averaging daily emissions in order to obtain56

representative results. Section 4 analyses the applicability limits of the method and highlights sources of uncertainty.57

2 Methods58

2.1 Input data59

2.1.1 TROPOMI NO2 column densities60

NO2 can be observed from space with satellite instruments based on its strong absorption features in the 400–465 nm61

wavelength region (Vandaele et al., 1998). By comparing observed spectra with a reference spectrum, the amount of62

NO2 in a portion of the atmosphere between the instrument and the surface can be derived. The TROPOspheric Mon-63

itoring Instrument (TROPOMI), onboard the European Space Agency’s (ESA) Sentinel-5 Precursor (S-5P) satellite,64

is one of those instruments. This instrument has a large swath width (∼2600 km), combined with the 15-day orbit65

cycle of the satellite, leading to a revisit time of one day for every point of the Earth in absence of clouds. Moreover,66

these daily measurements are always collected during the middle of the day, the satellite crossing the sunlit equator at67

around 13:30 local time (LT). The high spatial resolution of the instrument (3.5×5.5 km2 since 6 August 2019) allows68

observing fine-scale structures of NO2 pollution, such as hotspots within medium-size cities or plumes from power69

plants and industrial facilities. Tropospheric vertical column densities (VCDs, or simply "columns") are provided70

after retrieval of total slant column densities using the Differential Optical Absorption Spectroscopy method (Platt71

et al., 2008). VCDs represent the integrated number of NO2 molecules per surface unit between the surface and the72

tropopause at the corresponding vertical. An algorithm also supplies an air mass factor, which is the ratio between73

slant and vertical column densities. This factor is derived from the knowledge of many physical quantities such as the74

vertical distribution of the absorber but also the viewing angle and the albedo of the observed surface. It comprises a75

significant part of the uncertainty in NO2 measurements (Boersma et al., 2004; Lorente et al., 2019), which becomes76

non-negligible in a polluted atmospehre. Each TROPOMI retrieval is also associated with a quality assurance value77

qa, which ranges from 0 (no data) to 1 (high-quality data). We selected NO2 retrievals with qa values greater than78

qa,lim = 0.75, which correspond to clear-sky conditions (Eskes et al., 2022). Here, we use TROPOMI NO2 retrievals79

in 2022 (OFFL product using processor version 2.5.0, product version 2.3.1 and 2.4.0 before and after November 202280

respectively). To limit effects due to product of processor version changes, other years are not studied.81

2.1.2 Meteorological and air composition fields82

Horizontal wind is taken from the ERA5 data archive, provided by the European Centre for Medium-Range Weather83

Forecasts (ECMWF). Both components have a horizontal resolution of 0.25°×0.25° gridded on 37 vertical pressure levels84

(Hersbach et al., 2020). ECMWF also produces a reanalysis for air composition, under the Copernicus Atmospheric85

Monitoring Service (CAMS). It provides analyses and forecasts for reactive gases, greenhouse gases and aerosols.86

These parameters are gridded on 25 vertical pressure levels with a horizontal resolution of 0.4°×0.4° and a temporal87

resolution of 3 hours (Huijnen et al., 2016). Here, ground concentrations of NO2, NO, OH, as well as temperature,88

are taken from CAMS to represent chemical processes in our model.89

2.1.3 Elevation data90

For computing altitude gradients, we use the Global Multi-resolution Terrain Elevation Data (GMTED2010, Danielson91

and Gesch (2011)). Elevation data is regridded on the TROPOMI grid, before calculation of the corresponding gradient92
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to derive a corrective "topography-wind" value that is detailed in Section 2.2.2.93

2.2 The mass-balance inversion94

2.2.1 Main principle95

The flux-divergence method is a mass-balance inversion model calculating the emissions of a given trace gas from96

observations of the corresponding vertical tropospheric columns, which is particularly well suited to data with high97

spatial resolution. In the case of NO2, this approach was pioneered by Beirle et al. (2019). It has subsequently been98

implemented differently by other researchers, in different circumstances under simplified forms or, on the contrary,99

more complex ones (Lama et al., 2020; Rey-Pommier et al., 2022; de Foy and Schauer, 2022; Sun, 2022). The flux-100

divergence method is based on the conservation of mass principle, which makes it possible to calculate emission101

densities at the pixel scale as a function of a transport term and a sink term. By noting C the local concentration of102

NO2 and w = (u, v, w) the mean wind at the time of measurement, the corresponding emissions EC are expressed as:103

EC =
∂C

∂t
+ div(Cw) + SC (1)

Here SC is the sink term expressing the loss of NO2 due to chemical reactions. Assuming that the vertical variations104

in concentration are small compared with the horizontal variations, and considering that most NO2 remains confined105

close to the ground, the previous equation can be rewritten in terms of tropospheric columns Ω, which enables, in106

steady state, the computation of emissions per surface area E, as:107

E =
∂(Ωu)

∂x
+

∂(Ωv)
∂y

+ SΩ (2)

SΩ is the sink term expressed by surface unit. D = ∂(Ωu)
∂x + ∂(Ωv)

∂y is the horizontal advection (transport) term. The108

assumption of a stationary state and a pollution concentration close to the ground means that the temporal and vertical109

dimensions of the problem can be ignored, resulting in a purely horizontal calculation of emissions. The corresponding110

reduction in complexity means that inversions can be performed very quickly compared with the conventional use111

of full-fledged 3D CTMs and without a priori knowledge on emissions. On the downside, such simplifications are112

accompanied by uncertainties, the main sources of which being uncertainties on the input tropospheric columns, wind113

direction and atmospheric composition.114

Finally, we convert the NO2 production into NOx emissions. Performing this conversion is accounting for the115

portion of NOx, mainly emitted as NO, which is not converted into NO2 by reaction with ozone. The reformation116

of NO by the photolysis of NO2 during the day leads to an equilibrium between the two compounds. The ratio117

L = [NOx]/[NO2] which usually varies between 1.2 and 1.4, depending on local conditions. NOx emissions are118

therefore calculated as:119

ENOx = LE (3)

In most urbanized areas, daytime NO concentrations frequently exceed 20 ppb. Under such conditions, this ratio is120

stabilized in a few minutes (Graedel et al., 1976; Seinfeld and Pandis, 2006). As this time is shorter than the inter-mesh121

transport timescale, the impact of stabilization time on the overall emission composition can be justifiably ignored.122

However, this assumption breaks down near emission sources, where the stationary hypothesis may not be applicable,123

and the value of L could be significantly higher than 1.4. The implications of this neglect will be discussed in Section124

4.1.125

2.2.2 Refined version126

In order to consider only anthropogenic pollution located close to the ground, it is necessary to remove any signal of127

natural emissions from the tropospheric columns provided by TROPOMI. In the absence of anthropogenic sources,128

the NO2 columns that are observed constitute a tropospheric background Ωb. At the global scale, this background is129

mostly due to soil emissions in the lower troposphere (Yienger and Levy, 1995; Hoelzemann et al., 2004). In the upper130

troposphere, NO2 sources include lightning, convective injection and downwelling from the stratosphere (Ehhalt et al.,131

1992). We remove that background by calculating the 1st tercile in a 200 pixel × 430 pixel zone around each pixel132

(along × across track, i.e. approx. 700 km × 2360 km). We assume that this zone is sufficiently large whatever the133

considered pixel so that this tercile corresponds to the typical local value for this background. We then subtract this134

background to the calculated tropospheric column densities and use the resulting lower tropospheric vertical density135
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Ω′ = Ω − Ωb in the flux divergence method. Such assumption can be challenged above macro-regions for which soil136

emissions and wildfires result in high NO2 values observed by TROPOMI (those emissions are therefore considered137

abusively as anthropogenic sources). This can also happen around shipping lanes where exhaust particles increase the138

likelihood of thunderstorms (Thornton et al., 2017). The neglect of such effects is highlighted in Section 4.1.139

We represent the sink term SΩ by considering only the chemical loss of NO2 due to its reaction with the hydroxyl140

radical (OH). This reaction follows a first-order kinetics, and the sink term can be expressed as SΩ = kOH+NO2 [OH]141

with kOH+NO2 the reaction rate whose value is given by Burkholder et al. (2020). This is equivalent to compute a142

mixed lifetime τ = 1/(kOH+NO2 [OH]), which generally ranges between 1 and 12h. In many studies, this quantity is143

kept uniform and constant in the use of the flux-divergence method (Beirle et al., 2019; de Foy and Schauer, 2022).144

Here, a singularity of our version of the flux-divergence method is to account for the temporal variability of OH, which145

is primarily driven by the amount of UV radiation from the stratosphere, but also for its spatial variability, since OH146

can also be influenced by NOx through a non-linear relationship (Valin et al., 2011). In this respect, our sink term147

is heavily reliant on the NOx sources accounted for in CAMS data. Neglecting a source, or mis-estimating the order148

of magnitude of its NOx emissions, therefore results in a wrong OH field whose bias depends on the amplitude of the149

neglect. Similarly, the coarse resolution in CAMS data (0.4°×0.4°) can fail to represent pollution gradients downwind150

different sources, leading to a wrong estimation of the real OH budget. We expect these effects to be minor compared151

to those that would result in representing a constant lifetime for NO2 which oversimplifies and misrepresents temporal152

and spatial dynamics by representing all situations the same way, whether they represent emitters or not.153

Additionally, systematic artifacts concerning advection processes were reported over regions with complex to-154

pographies, particularly when high tropospheric vertical column densities are observed over mountainous regions.155

These high values can hinder the identification and quantification of point sources, possibly due to inaccurate mean156

wind fields over mountains. A study by Sun (2022) shows that these patterns can also be caused by 3D transport157

effects which have been ignored in the simplified 2D approach which has been described so far. A "topography-wind"158

V term can be introduced in Equation 3 in order to correct for this effect using ground wind wg, the topography159

gradient ∇z0, and an inverse scale height Xe as follows:160

V = XeΩ′wg · ∇z0 (4)

Here, we choose a uniform and constant value of Xe = 0.3 km−1. This value corresponds to the mean inverse scale161

used by Sun (2022) who allowed for a variability for Xe by fitting its value using observational data through linear162

regressions. While we acknowledge the fact that choosing a single value for Xe is a simplification, we note that163

performing the fit of its value would require an arbitrary selection of the cells used for that fit. We therefore compute164

the following equation to estimate NOx emissions:165

ENOx = L(
∂(Ωu)

∂x
+

∂(Ωv)
∂y

+ kOH+NO2 [OH] + XeΩ′wg · ∇z0) (5)

Following de Foy and Schauer (2022), we perform the calculation of derivatives directly on the original TROPOMI grid166

(along-track and across-track) to better handle pixels with low-quality or no data, resulting in lower discontinuities in167

the calculated transport term. To do so, we re-grid the wind field on the TROPOMI grid and linearly interpolate the168

estimates at the satellite timestamp. We do the same for all other parameters that are concerned for the calculation of169

the sink term (concentrations of OH, NO and NO2, and temperature). Emissions are thus calculated on the TROPOMI170

grid and are then re-gridded on a regular north-south/east-west grid with a 0.0625°×0.0625° resolution.171

Finally, the accuracy of TROPOMI retrievals can be compromised by challenges in estimating the air mass factor172

or local effects, particularly in specific vertical distribution scenarios (Griffin et al., 2019; Lorente et al., 2019; Judd173

et al., 2020). The latest versions of TROPOMI (v2.x) showed VCD values higher than those of earlier versions (v1.x),174

with biases up to 40%, depending on pollution levels and seasonal variations (Van Geffen et al., 2022). Additionally, the175

chemistry-transport model TM5, which is integrated into the operational TROPOMI product, tends to underestimate176

pollution near the ground, while overestimating NO2 concentrations at higher altitudes over the sea (Latsch et al.,177

2023; Rieß et al., 2023). To compensate for such effects, studies like Goldberg et al. (2022) or Beirle et al. (2023)178

corrected the used VCDs by changing the corresponding vertical sensitivity over emitters. In this study, we do not179

perform such adjustment, while recognizing it could constitute a further step in the improvement of our dataset. On180

Figure 1, we sum up the functioning of our method.181
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Figure 1: General overview of the mass-balance inversion.

2.3 EDGAR bottom-up inventory182

Many high-resolution datasets for air quality exist at global (Benkovitz et al., 1996; Granier et al., 2019) or regional183

scale (Kuenen et al., 2022; He, 2012). Here we compare our averaged emissions for the year 2022 to NOx emissions184

provided by The Emissions Database for Global Atmospheric Research (EDGARv6.1) for 2018. It is a global inventory185

providing 0.1°×0.1° gridded emissions of greenhouse gases and air pollutants at the monthly scale, covering different186

sectors (Crippa et al., 2020). It is based on activity data of different nature (population, industrial processes, energy187

production, fossil fuel extraction, agricultural outputs, etc.) derived from the International Energy Agency (IEA) and188

the Food and Agriculture Organization (FAO), and the emission factors corresponding to each of the covered sectors.189

National and regional information on technology mix data provide a better characterization of these emission factors.190

End-of-pipe measurements are also used for correcting purposes. The version 6.1 of the inventory covers the years191

1970-2018.192

3 Technical validation193

3.1 Spatial distribution of the global NOx emissions194

The global map of the averaged NOx emissions for 2022 is shown on Figure 2. Emissions are represented as density,195

i.e. by surface unit. The map is characterized by significant regional differences. The highest values are concentrated196

in developing areas such as south-eastern China, India and the Middle East. High values are also found in Europe,197

Russia and the United States, where they correspond to megacities and industrial areas. Transport emissions can also198

be highlighted where they provide the highest share of emissions, i.e. on highways and shipping lanes which appear199

in various regions. South America, Oceania and Sub-Saharan Africa display low or zero emissions except in a small200

number of cities and industrial sites. Wildfires, which are frequent in rainforests and savannas (Mebust and Cohen,201

2013; Castellanos et al., 2014; Ossohou et al., 2019; Opacka et al., 2022), display quasi-zero emissions in Amazonia202

and low emissions in the Congo basin. Figure 3 zooms over seven macro-regions that cover most of the emitters over203

land and sea.204

Generally speaking, the maps highlights the industrialized areas, revealing the world’s main megacities where205

several sources of emissions (traffic, power, residential) are mixed. Some industrial facilities and large power plants206

also appear. Emissions are correctly resolved in most regions of the world. The observed spread of emissions over207

two to three pixels (i.e. about 12 to 20 km) further away from the exact location of the corresponding emitters is208

due to the turbulent spread of emissions, which is not considered in our method. Finally, we note that emissions in209

mid- and high-latitude regions (beyond about 40° from the Equator) seem to be noisy, due to an averaging over a210

smaller number of clear-sky days throughout the year. On average, countries such as Egypt, Niger and Saudi Arabia211

are observed more than 90% of the time with a quality flag higher than qa,lim = 0.75, while Ireland, Canada and212

Finland are observed less than 30% of the time. This uneven sampling is also present in tropical regions where rainfall213
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is frequent, as there is no measurement during cloudy scenes. Countries like Gabon, Indonesia or Peru are seen on214

average less than 40% of the time with quality flags higher than the threshold. In some cases, this low density of215

observations prevents emissions from intense sources from being quantified correctly at the monthly scale, as it is216

discussed in Section 3.4.217

Figure 2: TROPOMI-derived mean daytime NOx emission rates in 2022 estimated with the flux-divergence method. The seven frames
correspond to macro-regions whose emissions are specifically shown in Figure 3.

The statistical distribution of emissions is shown in Figure 4. Four different regimes of emissions can be distinguished218

in the red curve (note the log-log scale):219

• Very low values of emission densities (less than ∼0.02 Pmolecules.cm−2.h−1), in practice at places where there220

are almost no emissions in reality. Note that, as the calculated fluxes represent averaged emissions, such pixels221

can also represent places where high emissions occurred, but only during a small portion of the year, as it is the222

case in regions where wildfires frequently happen.223

• Residual emission densities (between ∼0.02 Pmolecules.cm−2.h−1 and ∼0.2 Pmolecules.cm−2.h−1), for which it224

is difficult to determine the corresponding source.225

• Low emission densities (between ∼0.2 and ∼2 Pmolecules.cm−2.h−1), generally high enough to be associated226

with an emitter, but too low for a reliable quantification to be possible unless heavy averaging. The upper limit227

corresponds approximately to the emission densities observed on smaller power plants.228

• High emission densities (higher than 2 Pmolecules.cm−2.h−1), where the signal-to-noise ratio is high enough to229

quantify emissions when enough observations are averaged.230

Figure 4 also shows negative values (blue curve), even though negative emissions are physically impossible.231

They appear in practice because the transport term, which includes a derivative, can be negative. In calculated232

emission densities, negative pixels of low absolute value are as numerous as positive pixels of the same amplitude;233

they correspond to numerical noise and are found in pollution-free zones where the sink term is virtually zero. Higher234

values for negative pixels are less frequent: we count about 4 times less pixels with emission densities lower than -0.2235

Pmolecules.cm−2.h−1 than pixels with emission densities higher than 0.2 Pmolecules.cm−2.h−1 (yellow and red parts236

of the graph in Figure 4). The locations where such high values are observed for negative pixels correspond to areas237

close to anthropogenic sources of NOx, but in situations for which the absolute transport term has been overestimated238

or the sink term has been underestimated. Such negative emissions are limited to rare cases, such as Tehran, which239

will be discussed in Section 4.2.240
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Figure 3: TROPOMI-derived mean daytime NOx emission rates in 2022 estimated with the flux-divergence method for North America,
South America, Sub-Saharan Africa, Europe and North Africa, East Asia, Oceania, Middle East and Central Asia.
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Figure 4: Distribution of positive and negative TROPOMI-inferred NOx emissions for year 2022. Four regimes can be distinguished (the
values defining the thresholds between these regimes are given as order of magnitudes).

3.2 Diffuse sources and point sources241

The assimilation of high-resolution observations with the flux-divergence method holds a significant potential for242

pinpointing emissions at small scale. As a consequence, it reveals the difference between sources that emit pollutants243

from a localized area, called point sources, from diffuse sources emitting pollutants over a wider area, such as sprawling244

urban regions like megacities. While the extent of the observed NO2 pollution created by a point source is primarily245

determined by advection and turbulent mixing, the spread of the pollution for a diffuse source is above all determined246

by the spatial extent of the source itself. Point sources are therefore characterized by a dominance of the transport247

term, while diffuse sources (the term "area sources" is also used) exhibit a balance or dominance of the sink term248

(Beirle et al., 2019). Within the flux-divergence method, these two types of sources can be identified differently, since249

the main sources of uncertainty come from wind angle in the case of a point source while they come from the OH250

concentration explaining the sink term for a diffuse source. Because this distinction remains qualitative, to classify a251

detected source as one or the other type, arbitrary thresholds must be defined, concerning the number of pixels above252

a certain value of emissions, or the share of the transport term within the emissions in Equation 5. Here, we catalog all253

sources in the averaged emissions map for 2022. Firstly, we define a source as a cluster of at least 3 contiguous pixels254

above the value of 2 Pmolecules.cm−2.h−1. We then classify these sources as "point" or "diffuse" according to the255

number of pixels in the detected cluster: point sources being the clusters comprising 3 to 9 pixels, and diffuse sources256

those with more than 10 pixels. We detected 456 point sources and 330 diffuse sources, whose locations are displayed257

on Figure 5. The detailed distribution is given in Supplementary Materials and in Rey-Pommier et al. (2024).258

Figure 5: Location of different point sources in blue (between 3 and 9 contiguous pixels above 2 Pmolecules.cm−2.h−1) and diffuse sources
in red (more than 10 contiguous pixels) for 2022.
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3.2.1 Diffuse sources259

Most point sources correspond to facilities such as power stations, cement kilns or mining sites. They can also260

correspond to concentrated urban areas. Conversely, almost all diffuse sources correspond to urban areas of megacities,261

whether they comprise industrial facilities within their extent or not. Exceptions concern mega-emitters like the Medupi262

and Matimba power plants in South Africa, mentioned in various articles (Reuter et al., 2019; Hakkarainen et al.,263

2021; Cusworth et al., 2023) or the Ain Sokhna industrial area in Egypt, already mentioned in Rey-Pommier et al.264

(2022). In both cases, such groups of industrial facilities exhibit particularly high emissions over more than 10 pixels265

and are detected as diffuse sources. Figure 6 displays the emissions of diffuse sources corresponding to megacities:266

Baghdad (32.9 t.h−1, 198 pixels), Istanbul (16.3 t.h−1, 132 pixels), Mexico City (17.4 t.h−1, 111 pixels), Moscow (20.4267

t.h−1, 180 pixels), Riyadh (33.1 t.h−1, 172 pixels) and Shanghai (102.0 t.h−1, 837 pixels). Table 1 shows the 20 diffuse268

sources with the highest emissions.269

Figure 6: Map of mean daytime TROPOMI-inferred NOx emissions for 2022 for six megacities (diffuse sources), clockwise: Baghdad,
Istanbul, Moscow, Shanghai, Riyadh, and Mexico City. The approximate boundaries of the cities are denoted with dashed lines and the
location of power plants and cement plants are denoted with circles and squares respectively, except for Shanghai (unavailable data).
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These six diffuse sources differ greatly from one another: Baghdad, Mexico City and Riyadh are very dense and270

isolated, allowing their emissions to stand out from the rest of the hotspots, while Moscow and Istanbul are less271

dense, resulting in lower emission densities. The Shanghai urban area has a large spatial extent, and the associated272

cluster extends over an area much wider than the city limits. Finally, it should be noted that Moscow and Shanghai273

experience many cloudy days, resulting in a fairly low level of averaging, leading to numerical noise that is visible274

on the maps. Our averaging also explains the absence of high annual emissions due to wildfires in our analysis.275

At a lower temporal scale however, wildfire emissions display an annual variability without significant outliers. The276

example of the rainforest in the Congo basin is studied in the Supplementary Materials, with emissions higher than277

the 2 Pmolecules.cm−2.h−1 threshold during summer (JJA).278

Number of
pixels in cluster

Latitude
(°N)

Longitude
(°E)

Mean emission density
(Pmolecules.cm−2.h−1)

Output
(t.h−1) Emitter

2818 37.527 116.010 2.827 235.03 Beijing urban area, China
837 31.283 120.352 3.834 102.01 Shangai urban area, China
439 35.549 51.329 7.089 94.19 Tehran urban area, Iran
552 -26.406 28.739 4.266 78.45 Gauteng coal region, South Africa
425 22.798 113.630 3.721 54.22 Shenzen & Hong-Kong urban area, China
361 29.653 31.126 4.127 48.16 Cairo & Beni Suef urban area, Egypt
303 29.582 47.874 4.555 44.64 Kuwait City urban area, Kuwait
172 24.649 46.797 5.695 33.12 Riyadh urban area, Saudi Arabia
198 32.771 44.298 5.319 32.94 Baghdad urban area, Iraq
274 41.174 123.033 4.286 32.88 Anshan urban area, China
353 39.338 110.656 2.986 30.32 Ordos mining region, China
224 37.162 126.874 4.312 28.63 Seoul urban area, South Korea
171 25.316 55.342 4.809 27.65 Dubai urban area, United Arab Emirates
157 32.577 51.610 4.860 23.92 Ispahan urban and industrial area, Iran
127 21.115 39.309 4.916 21.66 Djeddah urban area, Saudi Arabia
219 37.317 112.087 3.173 20.56 Shanxi urban area, China
180 55.715 37.501 5.395 20.35 Moscow urban area, Russia
102 24.118 82.747 5.530 19.15 Jogi Chaura industrial zone, India
154 39.329 106.809 4.258 18.87 Wuhai/Hainan industrial zone, China
83 -12.183 -76.853 6.189 18.68 Lima urban area & Pachamac mines, Peru

Table 1: List and location of the 20 diffuse sources with highest TROPOMI-inferred NOx emissions, and corresponding size of the cluster
and main sector responsible for the emissions.

3.2.2 Point sources279

With a manual verification of the 456 detected point sources, we identify 61 outliers, 30 of which being points in280

places totally empty from any anthropogenic activity, and 31 points in areas with anthropogenic activity but without281

significant source (no facility of significant size). Most of these outliers are located in high-latitude regions, with 34 of282

them being located north to the 50°N parallel.283

Because a threshold has been introduced in the classification of emitters, sources classified as "point sources"284

are isolated from other emitters, and their emissions constitute a peak in the displayed map. With a threshold285

set at 2 Pmolecules.cm−2.h−1, the corresponding signal-to-noise is generally high enough to perform a peak-fitting286

around the source. Since the observed spread of the emissions around the source is given by turbulent diffusion, we287

try to fit a 2D-Gaussian function on the detected point sources over a zone of 14 × 14 pixels around the detected288

maximum emission density within the corresponding cluster. Three examples are shown for the city of Medina, Saudi289

Arabia, the Shar Industrial zone, Oman and the Western Mountain power plant, Libya on Figure 7. Note that these290

locations correspond to point sources well-isolated from other industrial activities, in countries with frequent cloud-free291

conditions that allowed an averaging over a high number of days in 2022.292

We acknowledge the fact that the value of 2 Pmolecules.cm−2.h−1 to mark the limit between high and low293

emissions is arbitrary, as other values for this threshold could be used. For instance, the Beijing cluster, identified on294

Table 1, with a size of 2818 pixels respectively, is broke down into 31 smaller clusters (12 diffuse sources and 19 point295

sources) when changing the threshold from 2 Pmolecules.cm−2.h−1 to 3 Pmolecules.cm−2.h−1. These new clusters296

represent better urban sprawling around the various megacities and industrial facilities in Eastern China. However, in297

the same regions, three point sources disappear when performing this threshold change. Such differences are displayed298

in the Supplementary Materials. To determine the sensitivity of the point source and diffuse source detection and299

classification method, we carry out the detection by changing this threshold from 2 Pmolecules.cm−2.h−1 to 3 and 4300

Pmolecules.cm−2.h−1. The point sources and diffuse sources are identified, and a fit with a 2D-Gaussian is carried301
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out on point sources to estimate better emissions by accounting for the Gaussian nature of turbulent diffusion around302

the source. We then count the number of point sources with a fit of correct quality (with a correlation coefficient R2
303

higher than 0.4). The results are shown in Table 2 for the different thresholds, and we compare the countries with the304

most point sources. Note that among the 61 outliers identified in the detected point sources with the threshold of 2305

Pmolecules.cm−2.h−1, only 10 reached a value of R2 higher than 0.4.306

Figure 7: Calculated mean daytime NOx emissions in 2022 for point sources (left) and fitted emissions using a 2D-Gaussian function (right)
for the city of Medina, Saudi Arabia (a), the Sohar Industrial Zone, Oman (b) and the Western Mountain power plant, Libya (c).

Threshold value 2 Pmolecules.cm−2.h−1 3 Pmolecules.cm−2.h−1 4 Pmolecules.cm−2.h−1

Number of point sources 456 303 172
Point sources with R2 > 0.4 237 189 114
China 24 27 18
India 37 33 22
Russia 23 18 12
United States 18 6 3
Türkiye 7 6 1
Iran 7 9 9
Saudi Arabia 5 5 5
Japan 2 5 4
Egypt 3 2 4
Germany 6 3 1
Iraq 5 5 2
Mexico 7 5 3
Algeria 5 2 0
Pakistan 5 1 2

Table 2: Analysis of the number of point sources detected as a function of the threshold applied for cluster detection, and the number of
point sources whose fit with a 2D-Gaussian was of acceptable quality (R2 > 0.4). Countries with at least 5 point sources with one of the
thresholds are displayed.
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As seen with the example of Beijing, moving to a higher threshold can reduce the number of point sources by not307

including some emitters with lower emissions, but it can also increase the number of detected point sources by308

reducing the number of pixels corresponding to the cluster and moving certain emitters from the "diffuse source"309

category to the "point source" category. For example, with a limit of 2 Pmolecules.cm−2.h−1, the group of the Ras310

Laffan power stations in Qatar does not appear as a point source because its emissions are associated to a greater311

cluster corresponding to a diffuse source which includes the nearby Doha megacity. Conversely, with limits of 3 or312

4 Pmolecules.cm−2.h−1, these power plants appear as a point source, and a good quality Gaussian fit provides their313

total emissions of 1.69 t.h−1, close to the value of 1.86.h−1 reported for the four-year average between 2019 and 2022314

in Rey-Pommier et al. (2023). Finally, it should be noted that lowering the threshold to 1 Pmolecules.cm−2.h−1 also315

reduces the number of diffuse sources because several nearby urban areas become linked by residual emission zones316

into a single, larger, diffuse source. Conversely, lowering the threshold detects a very large number of source points,317

but many of these additional points are outliers. In the rest of the study, we therefore choose to keep the lowest318

value of the threshold, i.e. 2 Pmolecules.cm−2.h−1, to optimise the number of correct emitters we work with. These319

emitters account for a total output of 2,388 t.h−1 (370 t.h−1 for point sources and 2018 t.h−1 for diffuse sources).320

This represents about 17% of all emissions with densities higher than 0.2 Pmolecules.cm−2.h−1 (with a total output321

of 14,335 t.h−1). As urban areas with more than 1 million inhabitants gather around 16% of the global population322

(Zimmer et al., 2023), this share of emissions from point and diffuse sources seems consistent with the detection limit of323

the flux-divergence method using TROPOMI retrievals, as urban areas lower than 1 million inhabitants are generally324

not detected as diffuse sources here.325

The full list of the 456 point sources and 330 diffuse sources are given in Supplementary Materials. This list can326

be compared with the catalog provided by Beirle et al. (2023). Of the 237 point sources for which the Gaussian fit327

is of correct quality (with R2 > 0.4), 144 also appear in their catalog. For these points, we generally obtain higher328

emissions (with a median of 409 t.h−1 and an average of 479 t.h−1 in our case, whereas they have a median of 296 t.h−1
329

and an average of 344 t.h−1). The two datasets have no particular reason to exhibit any clear correlation because they330

concern different years, and because while their approach focused on monthly averages, ours presents annual averages.331

For example, a site designated as a point source by Beirle et al. (2023) might not be detected if averaged over a whole332

year, especially if it stays inactive during certain periods. For instance, their catalog shows 187 occurrences where the333

signal of NOx emissions was significant for 6 months out of 12, and 348 occurrences for 5 months.334

3.3 National and regional outputs and comparison with bottom-up emissions335

We perform an analysis of emissions at the scale of countries by comparing them to the NOx emissions provided by336

EDGARv6.1 for 2018. For our TROPOMI-inferred emissions, we calculate the total mean NOx output, representing337

daytime emissions for 2022, for each country using country masks at the 0.0625°×0.0625° resolution. To avoid any338

over-estimation of the total output due to a very high number of pixels with very low emissions, we exclude from339

the calculation pixels with emission densities below 0.2 Pmolecules.cm−2.h−1. For emissions in EDGARv6.1, we sum340

the gridded emissions, representing monthly averages in 2018, for all sectors covered by the inventory and calculate341

the average flux for the year 2018. The output for each country is calculated using country masks at the 0.1°×0.1°342

resolution. In both cases, we include pixels that directly touch coastlines because marine regions close to the shore343

see anthropogenic emissions spread due to turbulent diffusion. This can result in over-estimating total emissions for344

smaller countries, especially those with low emission densities. In order not to account for such outliers, we exclude345

countries with a population lower than 300,000 inhabitants or with a size lower than 1,000 km2 from our analysis. This346

concerns many insular countries in the Caribbean and the Pacific, as well as micro-states like Andorra or Singapore.347

Figure 8 shows the country-wise comparison, covering 164 countries, and Table 3 provides a comparison at the scale348

of eight different macro-regions: Europe, North America and the Caribbean, South America, Middle East and North349

Africa, Former USSR countries, Oceania, Sub-Saharan Africa and the rest of Asia.350

TROPOMI-inferred emissions are generally close to EDGAR estimates for high income level countries or countries351

with a majority of sources located in areas with high observation densities. This is the case for the three largest emitting352

countries, China, the United States and India, with TROPOMI-inferred emissions 11, 16 and 6% lower than EDGAR353

estimates respectively. These three countries account for 44% of global emissions. However, for the fourth highest354

emitting country, Russia, we estimate emissions 79% higher than EDGAR. We interpret this discrepancy as due to the355

low density of observations there, which leads to errors in calculating emissions over a large area. This is consistent356

with the large discrepancies found for many countries that also have low observation densities. The other countries357

for which the difference between our emissions and the EDGAR estimates is significant are low-income countries.358

It is possible that the sources there are small and difficult to detect with our method; it is also possible that the359

corresponding EDGAR estimates are imprecise, due to the incomplete or outdated nature of the reported sources in360
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these countries. The macro-regions with the highest discrepancies are thus Sub-Saharan Africa and the former USSR.361

Figure 8: Comparison between TROPOMI-inferred daytime NOx emissions for 2022 and mean emissions from EDGARv6.1 in 2018 for all
countries, classified by macro-regions.

At the global scale, our TROPOMI-inferred daytime emissions for all considered countries (i.e., excluding emissions362

which take place at sea and in smaller countries) reach a total value of 11,209 t.h−1. This value is consistent with363

that of EDGAR at 12,243 t.h−1, i.e around 107 Mt per year, close to the value of 123 Mt calculated by Stocker (2014)364

for global anthropogenic emissions in 2000 (which include shipping and aircraft emissions). We should however note365

that our TROPOMI-inferred emissions only represent daytime emissions taken around 13:30 LT, which are generally366

lower during mid-day than other times of the day, where pollution peaks in the early morning and late afternoon are367

reported for most trafic in many cities and for power generation (Menut et al., 2012). Conversely, emissions during368

daytime are generally much higher than nighttime emissions.369

Region TROPOMI
2022 (t.h−1)

EDGAR
2018 (t.h−1)

Relative bias
VS EDGAR

(weighted average)

Mean absolute
error VS EDGAR

(unweighted average)
Subsaharan Africa 656 702 -6.5 % 90.2%
Rest of Asia 4424 5482 -19.3 % 49.3%
Europe 842 1092 -22.9 % 38.7%
Middle East & North Africa 1509 1125 34.2 % 49.0%
North America & the Caribbean 1729 1944 -11.0 % 48.9%
Oceania 104 282 -63.2 % 52.6%
South America 512 762 -32.8 % 53.4%
Former USSR 1433 856 67.6 % 74.8%
Total 11209 12243 -8.4 % 60.6%

Table 3: Comparison between TROPOMI-inferred daytime NOx emissions for 2022 and mean emissions from EDGARv6.1 in 2018 for
macro-regions. For each macro-region, the relative bias between total TROPOMI-inferred emissions and total EDGAR emissions is
calculated. The mean absolute bias for all countries of these macro-regions is also calculated.

3.4 Temporal distribution and averaging size370

The results presented so far concerned daytime emissions averaged on the entire year 2022 (at around 13:30 local371

time for each pixel). They therefore show a certain potential for mapping the sources of pollution, quantifying the372

13

https://doi.org/10.5194/essd-2024-410
Preprint. Discussion started: 30 October 2024
c© Author(s) 2024. CC BY 4.0 License.



corresponding emissions and characterising their type (by size and country or region). Several studies have shown the373

possibility to characterise a weekly cycle of NOx emissions (Stavrakou et al., 2020; Rey-Pommier et al., 2022). The use374

of geostationary satellites, such as the Geostationnary Environment Monitoring Spectrometer (GEMS) in East Asia375

(Kim et al., 2020), the Tropopheric Emissions Monitoring of Pollution (TEMPO) in North America (Zoogman et al.,376

2017) and Sentinel-4 (launch planned in September 2024) in Europe (Gulde et al., 2017), could also prove promising377

for characterising the daily cycle of emissions, which would significantly improve forecasting capabilities. In our case,378

TROPOMI can only monitor pollution on a daily basis provided that retrievals are of high quality, and the analyses379

presented so far could theoretically be carried out at this temporal resolution. In practice however, the high sensitivity380

of the method to wind direction and the low signal-to-noise ratio around sources at high latitudes leads to daily381

emission maps that are very noisy in most cases, making it difficult to monitor activity at this temporal resolution.382

Averaging is therefore required to limit noise effects and limit the uncertainties associated to emission estimates. Here,383

we try to evaluate what level of averaging is necessary to limit noise effects and allow a monitoring of emissions. To384

this end, we consider the average daily emissions obtained for 2022 (i.e. over a maximum of 52 weeks) to be the most385

accurate estimate of daytime emissions. We compare this maximum averaging value with averages based on a smaller386

number of estimates. We compare the emissions of various emitters, calculated with an averaging period of 12, 24, 36387

and 48 weeks. Figure 9 shows the results for diffuse sources, which are all urban areas, but with different latitudes,388

populations, levels of development and energy mixes: Ankara (Turkey), Cape Town (South Africa), Madrid (Spain),389

Portland (United States), Chaguanas (Trinidad and Tobago), Saint Petersburg (Russia), Manila (Philippines) and390

Muscat (Oman). Figure 10 shows the results for the source points, which are industrial facilities in Egypt, Australia,391

Mexico, Chile, India and Germany. The sources were chosen for their relative isolation from other sources. Calculated392

emissions correspond to the sum of pixels around the source with densities greater than 2 Pmolecules.cm−2.h−1. There393

are two pitfalls to be avoided in this comparison:394

- The first pitfall would be not to account for the seasonal cycle of emissions, which is very pronounced in some395

cases, and to compare chronological averages. For example, comparing the first 12 weeks of the year with the396

first 24 weeks of the same year would not make sense in terms of the difference with emissions averaged over397

the whole year, because in the first case, emissions would essentially be calculated in boreal winter, whereas in398

the second case, emissions would be included during spring and summer. To avoid this seasonal bias, emissions399

averaged over 12 weeks correspond to an average over the first week of each of the 12 months of 2022, and400

emissions averaged over 24 weeks correspond to the first two weeks of these same 12 months, and so on.401

- The second pitfall would be not to account for the weekly cycle of emissions. NOx emissions are generally lower402

at weekends due to a reduction in human activity in most areas (i.e. on Saturday and Sunday, or Friday and403

Saturday in most Arabian and North-African countries). It is therefore necessary to ensure that the proportion of404

weekend days and weekdays in each of the averages calculated remains the same, hence the interest in averaging405

by weeks (these proportions are therefore 2/7 and 5/7 respectively). We also carry out a final set of averaging406

over 24 days, i.e. 2 days per month. Since the seasonal effect (first pitfall) is generally stronger than the weekly407

bias (second pitfall), we therefore choose to retain the principle of selecting the same number of days in each408

month, even if it means making comparisons between averages where the weekend and weekday rates differ by409

2/7 and 5/7. This last averaging set will be indicated as "irregular".410
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Figure 9: NOx emissions for 8 different urban areas (diffuse sources), averaged over a period of 24, 84, 168, 252 and 336 days, evenly
distributed throughout the year. The proportion of weekend days and weekdays is identical in all the averaging sets except the first one of
24 days.
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Figure 10: NOx emissions for 8 different industrial facilities (diffuse sources), averaged over a period of 24, 84, 168, 252 and 336 days,
evenly distributed throughout the year. The proportion of weekend days and weekdays is identical in all the averaging sets except for the
first set of 24 days.

In the case of urban areas, the different averages uniformly distributed over time show a similarity in the emissions411

calculated over the time horizons for Ankara, Muscat, Cape Town, and, to a certain extent, Madrid. For these cities,412

the low cloud cover allows a high density of observations and optimal averaging. The 84-day averaging, and to some413

extent the 24-day irregular averaging, seems sufficient for monitoring emissions. This is not the case for the other414

urban areas studied, for which the observation density is lower, such as Manila, Saint Petersburg and, to a certain415

extent, Chaguanas. For these cities, emissions monitoring with averaging below 168 days (or even 252 days in the case416

of Saint Petersburg) is therefore limited by noise effects. In the case of the studied point sources, similar emissions417

are observed after an 84-day averaging. In some cases, a 24-day averaging is also sufficient, while in others it is not.418

The representativeness of emissions on such a low level of averaging should be considered with caution, as emissions419

from industrial plants are always more irregular than those from cities, with the exception of power stations used for420

baseload electricity generation. The averages over 84 days presented here represent emissions that include several days421

of activity and several moments of inactivity.422

Overall, this analysis seems to indicate that tracking emissions from source points or diffuse sources using the423

flux-divergence method requires an averaging effort to limit the noise obtained in the daily emissions. This averaging424

effort, which increases with the density of observations, is of about a month in countries with frequent high-quality425

observations, but of about a quarter in regions with low observation densities, such as tropical regions and high-latitude426

regions.427

4 Uncertainties and assessment of results428

4.1 Model uncertainties429

Our top-down emissions are calculated here using a flux-divergence model, based on a simplified calculation of a430

transport term, a sink term and a conversion factor from NO2 to NOx. This simplicity reduces the computation time431

to calculate emissions and the dependence on external datasets, at the cost of increased model uncertainties. Here,432

although a "topography-wind" term has been introduced in this article to refine the transport term, the sink term433

remains simple and only represents the reaction between NO2 and OH. While this reaction is the first contributor434

of NOx loss, other sinks may be significant. For instance, organic peroxy radicals can oxidise NOx to form peroxy435

nitrates, making the corresponding sink important in the presence of VOCs (Stavrakou et al., 2013), especially in436

biomass fires. In different conditions, the formation of peroxyacetyl nitrate from NO2 (Moxim et al., 1996), can also437

contribute to a significant share of the NOx loss.438

Another model uncertainty comes from the calculation of the conversion of NO2 production to total NOx. The439

majority of NOx is emitted in the form of NO, which is not observed from space. A common assumption is that NO440

is rapidly transformed into NO2 through its reaction with ozone, reaching a stationary state within a few minutes.441

Numerous studies (Beirle et al., 2019; de Foy and Schauer, 2022) assumed a photostationary state in typical urban442

conditions and used a ratio of 1.32 based on Seinfeld and Pandis (2006). Here, the values of this ratio calculated443

from CAMS data did not differ much from this value. However, the photostationary state is a hypothesis which is444

potentially not verified on the scale of a NOx source like a power plant stack. Li et al. (2023b) calculated values of445
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this conversion ratio correlated with the combustion temperature and energy efficiency for sources in China that are446

highly intensive in energy such as power plants, and found a median value of 3.3. Biases in the calculation of the447

NOx:NO2 ratio can also arise in highly polluted environments, in which the Leighton relationship used to calculate448

this ratio is no longer valid. In particular, OH can also react with VOCs and form oxygenated VOCs. Further studies449

estimating this ratio at various spatial and temporal scales would thus provide a better implementation of our model.450

4.2 Data uncertainties451

The NO2 column densities are the main input quantity in our estimation of NOx emissions, making the its calculation452

within the TROPOMI product the first element to examine when considering the data uncertainties in our estimates.453

Columns are calculated from measurements of solar backscattered radiation and comparison with a specific UV-Visible454

band using the Differential Optical Absorption Spectroscopy method, before being assimilated to derive a tropospheric455

vertical component. The corresponding uncertainty under polluted conditions is dominated by the sensitivity of456

satellite observations to air masses near the ground, and is expressed through the calculation of the tropospheric air-457

mass factor (AMF). To assess the significance of such effects, vertical profiles within the TROPOMI product can be458

replaced by any other profile information, resulting in a new retrieved tropospheric NO2 column. Douros et al. (2023)459

replaced the a priori TROPOMI OFFL NO2 profile by high-resolution air quality forecasts for Europe. As compared460

to the standard TROPOMI NO2 data, this new product was found to be biased-low by 5% to 12% for most European461

cities. The air mass factor (AMF) itself can be replaced: for instance, Lama et al. (2022) re-calculated the AMF462

by replacing the tropospheric AMF of the original TROPOMI OFFL product by an AMF taken from WRF-Chem463

simulations. Similarly, Beirle et al. (2023) re-calculated the AMF above different emitters from the corresponding464

averaging kernel based on a peak profile at plume height to better reflect the distribution of NO2 close to ground,465

which resulted in an AMF correction of about 1.61. Here, we did not perform any of such corrections, and we consider466

a relative uncertainty for the column of 30% (Boersma et al., 2004), consistent with S-5P validation activities which467

indicate that TROPOMI tropospheric NO2 columns are systematically biased low by about 30%–50% over cities468

(Verhoelst et al., 2021). Such a bias seems to run counter to our comparison with the catalog by (Beirle et al., 2023),469

for which this change in sensitivity was performed but leading to emissions generally lower than ours. A more detailed470

analysis of the concerned emitters seems necessary to better understand the parameters that have the largest impact471

on the vertical sensitivity of TROPOMI retrievals and our inversion model.472

Other data uncertainties can arise from other parameters that play a crucial role in the estimation of advection473

and chemistry effects. An accurate representation of the wind is critical to estimate the transport term correctly.474

For a given plume, the poor representation of wind speed leads to an under-or over-estimation of transport, but the475

correct orientation of positive and negative values around the source remains. However, an incorrect representation476

of the wind direction, such as a non-alignment with the main direction of the plume, fails to represent a correct477

orientation of positive and negative values. The estimation of the transport term significantly thus relies heavily on478

the representation of the wind angle. Higher errors are therefore expected to be high in regions having winds that479

vary rapidly in time, or regions with complex horizontal wind variations, such as mountainous regions. In particular,480

situations where sub-grid scale-phenomena occur, not accounted for in ERA5 wind fields, might display even higher481

errors in the estimation of transported NOx. For instance, Tehran, Iran, has an extremely complex topography,482

and in the calculated emissions, the transport term is particularly high compared with the sink term, with high and483

unrealistic negative values on large scales around the Tochal mountain immediately to the north of the city. Other484

megacities such as Seoul, South Korea, Jeddah, Saudi Arabia, Chittagong, Bangladesh, also exhibit unrealistically485

high values for the transport term. Such errors in the estimation of emission can also come from a wrong estimation486

of the air composition when calculating the sink term. The NO2 lifetime relies heavily on the representation of the487

OH concentration field, which varies with NOx itself through a non-linear mechanism. An incorrect representation488

of the sink term can occur at the scale of a plume by not capturing this relationship due to an incorrect knowledge489

of emitters on the ground. This can also be due to the 0.4°×0.4° resolution of CAMS that do not always capture490

the NO2 gradients adequately in plumes near a known emitter (Valin et al., 2011; Li et al., 2023a). For the OH491

concentration, a relative uncertainty of 30% has been used (Huijnen et al., 2019), representing the largest component492

of absolute uncertainty apart from the vertical columns. Large errors in the annual cycle of OH, and therefore in the493

sink term, can thus be expected. As a consequence, a wrong estimation of wind angle and OH concentration can lead494

to unrealistically high emissions, or even negative emissions.495
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5 Conclusion496

In this study, we present a global quantification of NOx emissions by performing a mass-balance inversion based on497

the flux-divergence method, based. This approach offers a rapid alternative to traditional 3D inversion methods using498

Chemical Transport Models. The foundation of this method lies in the observation of tropospheric vertical column499

densities of NO2 provided by TROPOMI. Our methodology incorporates several components in the calculation of500

emissions: a transport term driven by horizontal wind, a sink term largely driven by OH concentrations, and a501

topography-wind correction term. The emissions calculated represent mean daytime fluxes for the year 2022, allowing502

us to map emissions on a global scale. The results highlight that the primary sources of NOx emissions are industrialized503

and developing countries. Our emission estimates are consistent with global estimates, as well as the EDGARv6.1504

inventory, though notable discrepancies are observed at the national level, particularly in former USSR countries505

and sub-Saharan Africa. Besides, we performed a pinpointing of emitters by distinguishing between diffuse sources,506

typically large metropolitan areas with extensive spatial distribution (456 identified emitters), and point sources,507

generally isolated industrial facilities with emissions that often exhibit a Gaussian spread. 456 diffuse sources and 330508

point sources are identified. Significant uncertainties remain, especially in regions where OH is not the only source of509

NOx removal, regions where wind representation is inaccurate, and regions where TROPOMI data exhibit substantial510

biases. Nonetheless, our work demonstrates the feasibility of annual NOx emission monitoring with reduced latency511

and fewer mis-allocation issues compared to traditional inventories. Our approach enables the monitoring of emissions512

at the monthly scale in regions with high observation densities, that usually correspond to dry, mid-latitude countries.513

Conversely, the effect of numerical noise, combined with low-observation densities, restricts such monitoring to a higher514

averaging period of up to months, generally in tropical and high-latitude regions. Efforts should be made to further515

develop this method to provide a near-real time monitoring tool a higher temporal resolution for these regions. The516

results of this study were obtained from the calculation of daily NOx emissions in 2022 and their annual average.517
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