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s Abstract. We present top-down global gridded emissions of NOy for the year 2022. This dataset is constructed
o from retrievals of tropospheric vertical column densities of NOy by the TROPOMI spaceborne instrument associated
10 with winds and atmospheric composition data from ECMWF reanalyses, using an improved version of a mass-balance
u  atmospheric inversion. The emissions are provided with a spatial resolution of 0.0625°x0.0625° and deliver a detailed
2 overview of the distribution of emissions. They allow the identification of intense area sources and isolated emitters,
13 and the quantification of their associated emissions. At global level, the emissions obtained are consistent with the
1w EDGARv6.1 bottom-up inventory, although there are differences at regional level, particularly in emerging countries
15 and countries with low observation densities. The three largest emitting countries, China, the United States and
1 India, are 11, 16 and 6% lower than EDGAR estimates. Uncertainties remain high, and a quantitative analysis of
7 emissions over several averaging periods indicates that averaging emissions uniformly across the year may be sufficient
18 to obtain estimates consistent with annual averages, in regions of the world with high retrieval densities. This dataset
10 is designed to be updated with a low latency to help policymakers monitor emissions and implement energy savings
2 and clean air quality policies. The data can be accessed at https://doi.org/10.5281/zenodo. 13957837 as monthly
z files (Rey-Pommier et al., 2024).

» 1 Introduction

2 Air pollution is one of the leading causes of premature death in the world. Public health policies, implemented
» at the scale of countries, regions or cities, often aim to reduce the exposure to several pollutants, such as nitrogen
% oxides (NOy = NO+NOy). Such mitigation plans therefore require a precise knowledge of the emitters, as well as
27 a monitoring of their emission levels over time. Data on NOy emissions is therefore fundamental for monitoring the
;s implementation of air quality policies. Besides, because NOy is mainly produced during the combustion of carbon fuels
2 at high temperatures, such data can also be a tool to measure progress towards carbon neutrality. Gridded emissions
s with high spatial and temporal resolution are therefore of great scientific and political value. Many of such datasets
31 are emission inventories, i.e. bottom-up models in which emissions are calculated on the basis of known sectoral
» activities and allocated in time and space, combined with specific emission factors by sector and, possibly, by country.
;3 These inventories provide valuable information on long-term trends and large-scale emission budgets, but they suffer
s from several weaknesses. They hardly represent daily or weekly variations, their activity data may be outdated, and
35 some sources may be misallocated or unknown, which is common in many developing countries. Besides, uncertainties
3 surrounding rapidly changing emissions factors and the generally low temporal resolution of activity data limits, in
s certain circumstances, the realism of such bottom-up inventories. Finally, they have a data lag of at least one year,
33 which limits their potential as monitoring tools.

30 In this context, increasing efforts have been made to overcome the weaknesses of the inventories in order to
2 obtain independent emission datasets that are homogeneous from one country to another. Such datasets are of the
2 top-down type: they use direct observations of pollution and result from the inversion of an atmospheric chemistry-
« transport model (CTM) in which these atmospheric observations are assimilated. The observation data may be in-situ
1 measurements or satellite retrievals.
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a In previous studies, we used a method for detecting and quantifying NOy emissions from daily observations of NO4

s columns by the TROPOMI instrument, onboard the Sentinel 5P instrument. This method, developed for the countries
s of the Eastern Mediterranean and Middle East region, is based on a two-dimensional simplification of atmospheric
4 chemistry and transport, and does not require the direct use of a full 3D chemistry-transport model. Here, we extend
s the emissions domain to the whole world for the year 2022, and provide a dataset of averaged NOy emissions at
4 a resolution of 0.0625°x0.0625°. We analyse the results by pinpointing emitters and distinguishing between point
so  sources, generally corresponding to isolated industrial facilities, and diffuse/area sources, generally corresponding to
st megacities. We also compare the results with the bottom-up inventory EDGARv6.1 and assess their reliability using
52 different average horizons.

53 This article is structured as follows: Section 2 details the method used throughout this study, its improvements
s« and simplifications since its previous uses, and the input data in its implementation. Section 3 presents the global
ss NOy emissions dataset and analyses the different types of emitters. It also compares the results obtained with the
ss  EDGARv6.1 bottom-up inventory, and analyses different time horizons for averaging daily emissions in order to obtain
sz representative results. Section 4 analyses the applicability limits of the method and highlights sources of uncertainty.

»« 2 Methods

» 2.1 Input data
o 2.1.1 TROPOMI NO; column densities

st NOg can be observed from space with satellite instruments based on its strong absorption features in the 400-465 nm
2 wavelength region (Vandaele et al., 1998). By comparing observed spectra with a reference spectrum, the amount of
s NOs in a portion of the atmosphere between the instrument and the surface can be derived. The TROPOspheric Mon-
o itoring Instrument (TROPOMI), onboard the European Space Agency’s (ESA) Sentinel-5 Precursor (S-5P) satellite,
s is one of those instruments. This instrument has a large swath width (~2600 km), combined with the 15-day orbit
e cycle of the satellite, leading to a revisit time of one day for every point of the Earth in absence of clouds. Moreover,
o these daily measurements are always collected during the middle of the day, the satellite crossing the sunlit equator at
& around 13:30 local time (LT). The high spatial resolution of the instrument (3.5x5.5 km? since 6 August 2019) allows
e observing fine-scale structures of NOy pollution, such as hotspots within medium-size cities or plumes from power
n plants and industrial facilities. Tropospheric vertical column densities (VCDs, or simply "columns") are provided
n  after retrieval of total slant column densities using the Differential Optical Absorption Spectroscopy method (Platt
2= et al., 2008). VCDs represent the integrated number of NOy molecules per surface unit between the surface and the
73 tropopause at the corresponding vertical. An algorithm also supplies an air mass factor, which is the ratio between
7 slant and vertical column densities. This factor is derived from the knowledge of many physical quantities such as the
7 vertical distribution of the absorber but also the viewing angle and the albedo of the observed surface. It comprises a
7 significant part of the uncertainty in NOy measurements (Boersma et al., 2004; Lorente et al., 2019), which becomes
77 non-negligible in a polluted atmospehre. Each TROPOMI retrieval is also associated with a quality assurance value
7 ¢a, which ranges from 0 (no data) to 1 (high-quality data). We selected NOg retrievals with ¢, values greater than
1 gatim = 0.75, which correspond to clear-sky conditions (Eskes et al., 2022). Here, we use TROPOMI NO; retrievals
w0 in 2022 (OFFL product using processor version 2.5.0, product version 2.3.1 and 2.4.0 before and after November 2022
s respectively). To limit effects due to product of processor version changes, other years are not studied.

2 2.1.2 Meteorological and air composition fields

&3 Horizontal wind is taken from the ERA5 data archive, provided by the European Centre for Medium-Range Weather
s Forecasts (ECMWTF). Both components have a horizontal resolution of 0.25°x0.25° gridded on 37 vertical pressure levels
s (Hersbach et al., 2020). ECMWTF also produces a reanalysis for air composition, under the Copernicus Atmospheric
s Monitoring Service (CAMS). It provides analyses and forecasts for reactive gases, greenhouse gases and aerosols.
& These parameters are gridded on 25 vertical pressure levels with a horizontal resolution of 0.4°x0.4° and a temporal
s resolution of 3 hours (Huijnen et al., 2016). Here, ground concentrations of NOy, NO, OH, as well as temperature,
s are taken from CAMS to represent chemical processes in our model.

o 2.1.3 Elevation data

o For computing altitude gradients, we use the Global Multi-resolution Terrain Elevation Data (GMTED2010, Danielson
» and Gesch (2011)). Elevation data is regridded on the TROPOMI grid, before calculation of the corresponding gradient
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o3 to derive a corrective "topography-wind" value that is detailed in Section 2.2.2.

w 2.2 The mass-balance inversion
s 2.2.1 Main principle

o6 The flux-divergence method is a mass-balance inversion model calculating the emissions of a given trace gas from
oz observations of the corresponding vertical tropospheric columns, which is particularly well suited to data with high
e spatial resolution. In the case of NOs, this approach was pioneered by Beirle et al. (2019). It has subsequently been
o implemented differently by other researchers, in different circumstances under simplified forms or, on the contrary,
100 more complex ones (Lama et al., 2020; Rey-Pommier et al., 2022; de Foy and Schauer, 2022; Sun, 2022). The flux-
1w divergence method is based on the conservation of mass principle, which makes it possible to calculate emission
102 densities at the pixel scale as a function of a transport term and a sink term. By noting C' the local concentration of
103 NOy and w = (u, v, w) the mean wind at the time of measurement, the corresponding emissions F¢ are expressed as:

Ec = aaff + diV(CW) + S (1)

s Here S¢ is the sink term expressing the loss of NO2 due to chemical reactions. Assuming that the vertical variations
105 in concentration are small compared with the horizontal variations, and considering that most NOs remains confined
s close to the ground, the previous equation can be rewritten in terms of tropospheric columns €2, which enables, in
w7 steady state, the computation of emissions per surface area F, as:

_0(Qu) | 0(w)

E= S 2
oz + y + Sa (2)
w08 S is the sink term expressed by surface unit. D = a(g:) + 6(@(;1;) is the horizontal advection (transport) term. The

100 assumption of a stationary state and a pollution concentration close to the ground means that the temporal and vertical
1o dimensions of the problem can be ignored, resulting in a purely horizontal calculation of emissions. The corresponding
m  reduction in complexity means that inversions can be performed very quickly compared with the conventional use
w2 of full-fledged 3D CTMs and without a priori knowledge on emissions. On the downside, such simplifications are
u3  accompanied by uncertainties, the main sources of which being uncertainties on the input tropospheric columns, wind
s direction and atmospheric composition.

115 Finally, we convert the NOs production into NOy emissions. Performing this conversion is accounting for the
ue  portion of NOy, mainly emitted as NO, which is not converted into NOgy by reaction with ozone. The reformation
w of NO by the photolysis of NOy during the day leads to an equilibrium between the two compounds. The ratio
us L = [NOy]|/[NOz] which usually varies between 1.2 and 1.4, depending on local conditions. NOy emissions are
uo  therefore calculated as:

Eno, =LE (3)

120 In most urbanized areas, daytime NO concentrations frequently exceed 20 ppb. Under such conditions, this ratio is
=1 stabilized in a few minutes (Graedel et al., 1976; Seinfeld and Pandis, 2006). As this time is shorter than the inter-mesh
122 transport timescale, the impact of stabilization time on the overall emission composition can be justifiably ignored.
123 However, this assumption breaks down near emission sources, where the stationary hypothesis may not be applicable,
124 and the value of £ could be significantly higher than 1.4. The implications of this neglect will be discussed in Section
125 4.1.

1 2.2.2 Refined version

7 In order to consider only anthropogenic pollution located close to the ground, it is necessary to remove any signal of
s natural emissions from the tropospheric columns provided by TROPOMI. In the absence of anthropogenic sources,
129 the NOs columns that are observed constitute a tropospheric background 2. At the global scale, this background is
1 mostly due to soil emissions in the lower troposphere (Yienger and Levy, 1995; Hoelzemann et al., 2004). In the upper
= troposphere, NOj sources include lightning, convective injection and downwelling from the stratosphere (Ehhalt et al.,
12 1992). We remove that background by calculating the 1st tercile in a 200 pixel x 430 pixel zone around each pixel
3 (along x across track, i.e. approx. 700 km x 2360 km). We assume that this zone is sufficiently large whatever the
134 considered pixel so that this tercile corresponds to the typical local value for this background. We then subtract this
135 background to the calculated tropospheric column densities and use the resulting lower tropospheric vertical density
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3 Q= Q —Q in the flux divergence method. Such assumption can be challenged above macro-regions for which soil
17 emissions and wildfires result in high NOy values observed by TROPOMI (those emissions are therefore considered
s abusively as anthropogenic sources). This can also happen around shipping lanes where exhaust particles increase the
1o likelihood of thunderstorms (Thornton et al., 2017). The neglect of such effects is highlighted in Section 4.1.

140 We represent the sink term Sq by considering only the chemical loss of NOs due to its reaction with the hydroxyl
w1 radical (OH). This reaction follows a first-order kinetics, and the sink term can be expressed as Sq = kon:No,[OH]
w2 with koniNo, the reaction rate whose value is given by Burkholder et al. (2020). This is equivalent to compute a
13 mixed lifetime 7 = 1/(kon;~o,[OH]), which generally ranges between 1 and 12h. In many studies, this quantity is
1 kept uniform and constant in the use of the flux-divergence method (Beirle et al., 2019; de Foy and Schauer, 2022).
s Here, a singularity of our version of the flux-divergence method is to account for the temporal variability of OH, which
us is primarily driven by the amount of UV radiation from the stratosphere, but also for its spatial variability, since OH
w7 can also be influenced by NOy through a non-linear relationship (Valin et al., 2011). In this respect, our sink term
ug is heavily reliant on the NOy sources accounted for in CAMS data. Neglecting a source, or mis-estimating the order
1o of magnitude of its NOy emissions, therefore results in a wrong OH field whose bias depends on the amplitude of the
150 neglect. Similarly, the coarse resolution in CAMS data (0.4°x0.4°) can fail to represent pollution gradients downwind
11 different sources, leading to a wrong estimation of the real OH budget. We expect these effects to be minor compared
12 to those that would result in representing a constant lifetime for NOy which oversimplifies and misrepresents temporal
153 and spatial dynamics by representing all situations the same way, whether they represent emitters or not.

154 Additionally, systematic artifacts concerning advection processes were reported over regions with complex to-
155 pographies, particularly when high tropospheric vertical column densities are observed over mountainous regions.
156 These high values can hinder the identification and quantification of point sources, possibly due to inaccurate mean
157 wind fields over mountains. A study by Sun (2022) shows that these patterns can also be caused by 3D transport
158 effects which have been ignored in the simplified 2D approach which has been described so far. A "topography-wind"
10V term can be introduced in Equation 3 in order to correct for this effect using ground wind wy, the topography
w0 gradient Vzg, and an inverse scale height X, as follows:

V=X0w, Vz (4)

1 Here, we choose a uniform and constant value of X, = 0.3 km~—'. This value corresponds to the mean inverse scale
12 used by Sun (2022) who allowed for a variability for X, by fitting its value using observational data through linear
163 regressions. While we acknowledge the fact that choosing a single value for X, is a simplification, we note that
e performing the fit of its value would require an arbitrary selection of the cells used for that fit. We therefore compute
165 the following equation to estimate NOy emissions:

O(Qu)  9(w)
ox + dy

Exo, = E( + koH+NO, [OH] + XEQ,Wg . VZ()) (5)

s Following de Foy and Schauer (2022), we perform the calculation of derivatives directly on the original TROPOMI grid
w7 (along-track and across-track) to better handle pixels with low-quality or no data, resulting in lower discontinuities in
16 the calculated transport term. To do so, we re-grid the wind field on the TROPOMI grid and linearly interpolate the
1o estimates at the satellite timestamp. We do the same for all other parameters that are concerned for the calculation of
wo  the sink term (concentrations of OH, NO and NOs, and temperature). Emissions are thus calculated on the TROPOMI
m  grid and are then re-gridded on a regular north-south/east-west grid with a 0.0625°x0.0625° resolution.

172 Finally, the accuracy of TROPOMI retrievals can be compromised by challenges in estimating the air mass factor
s or local effects, particularly in specific vertical distribution scenarios (Griffin et al., 2019; Lorente et al., 2019; Judd
w et al., 2020). The latest versions of TROPOMI (v2.x) showed VCD values higher than those of earlier versions (v1.x),
ws  with biases up to 40%, depending on pollution levels and seasonal variations (Van Geffen et al., 2022). Additionally, the
e chemistry-transport model TM5, which is integrated into the operational TROPOMI product, tends to underestimate
w7 pollution near the ground, while overestimating NOs concentrations at higher altitudes over the sea (Latsch et al.,
ws 2023; Riefl et al., 2023). To compensate for such effects, studies like Goldberg et al. (2022) or Beirle et al. (2023)
o corrected the used VCDs by changing the corresponding vertical sensitivity over emitters. In this study, we do not
10 perform such adjustment, while recognizing it could constitute a further step in the improvement of our dataset. On
11 Figure 1, we sum up the functioning of our method.
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Figure 1: General overview of the mass-balance inversion.

2.3 EDGAR bottom-up inventory

Many high-resolution datasets for air quality exist at global (Benkovitz et al., 1996; Granier et al., 2019) or regional
scale (Kuenen et al., 2022; He, 2012). Here we compare our averaged emissions for the year 2022 to NOy emissions
provided by The Emissions Database for Global Atmospheric Research (EDGARv6.1) for 2018. It is a global inventory
providing 0.1°x0.1° gridded emissions of greenhouse gases and air pollutants at the monthly scale, covering different
sectors (Crippa et al., 2020). It is based on activity data of different nature (population, industrial processes, energy
production, fossil fuel extraction, agricultural outputs, etc.) derived from the International Energy Agency (IEA) and
the Food and Agriculture Organization (FAO), and the emission factors corresponding to each of the covered sectors.
National and regional information on technology mix data provide a better characterization of these emission factors.
End-of-pipe measurements are also used for correcting purposes. The version 6.1 of the inventory covers the years
1970-2018.

3 Technical validation

3.1 Spatial distribution of the global NO, emissions

The global map of the averaged NOy emissions for 2022 is shown on Figure 2. Emissions are represented as density,
i.e. by surface unit. The map is characterized by significant regional differences. The highest values are concentrated
in developing areas such as south-eastern China, India and the Middle East. High values are also found in Europe,
Russia and the United States, where they correspond to megacities and industrial areas. Transport emissions can also
be highlighted where they provide the highest share of emissions, i.e. on highways and shipping lanes which appear
in various regions. South America, Oceania and Sub-Saharan Africa display low or zero emissions except in a small
number of cities and industrial sites. Wildfires, which are frequent in rainforests and savannas (Mebust and Cohen,
2013; Castellanos et al., 2014; Ossohou et al., 2019; Opacka et al., 2022), display quasi-zero emissions in Amazonia
and low emissions in the Congo basin. Figure 3 zooms over seven macro-regions that cover most of the emitters over
land and sea.

Generally speaking, the maps highlights the industrialized areas, revealing the world’s main megacities where
several sources of emissions (traffic, power, residential) are mixed. Some industrial facilities and large power plants
also appear. Emissions are correctly resolved in most regions of the world. The observed spread of emissions over
two to three pixels (i.e. about 12 to 20 km) further away from the exact location of the corresponding emitters is
due to the turbulent spread of emissions, which is not considered in our method. Finally, we note that emissions in
mid- and high-latitude regions (beyond about 40° from the Equator) seem to be noisy, due to an averaging over a
smaller number of clear-sky days throughout the year. On average, countries such as Egypt, Niger and Saudi Arabia
are observed more than 90% of the time with a quality flag higher than g, jim = 0.75, while Ireland, Canada and
Finland are observed less than 30% of the time. This uneven sampling is also present in tropical regions where rainfall
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au is frequent, as there is no measurement during cloudy scenes. Countries like Gabon, Indonesia or Peru are seen on
a5 average less than 40% of the time with quality flags higher than the threshold. In some cases, this low density of
26 observations prevents emissions from intense sources from being quantified correctly at the monthly scale, as it is
a7 discussed in Section 3.4.
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Figure 2: TROPOMI-derived mean daytime NOy emission rates in 2022 estimated with the flux-divergence method. The seven frames

correspond to macro-regions whose emissions are specifically shown in Figure 3.

28 The statistical distribution of emissions is shown in Figure 4. Four different regimes of emissions can be distinguished
20 in the red curve (note the log-log scale):

20 e Very low values of emission densities (less than ~0.02 Pmolecules.cm~2.h~1), in practice at places where there
21 are almost no emissions in reality. Note that, as the calculated fluxes represent averaged emissions, such pixels
2 can also represent places where high emissions occurred, but only during a small portion of the year, as it is the
23 case in regions where wildfires frequently happen.

224 o Residual emission densities (between ~0.02 Pmolecules.cm™2.h~! and ~0.2 Pmolecules.cm~2.h~1), for which it
25 is difficult to determine the corresponding source.

26 e Low emission densities (between ~0.2 and ~2 Pmolecules.cm™2.h~1), generally high enough to be associated
27 with an emitter, but too low for a reliable quantification to be possible unless heavy averaging. The upper limit
28 corresponds approximately to the emission densities observed on smaller power plants.

20 e High emission densities (higher than 2 Pmolecules.cm™2.h~!), where the signal-to-noise ratio is high enough to
230 quantify emissions when enough observations are averaged.

231 Figure 4 also shows negative values (blue curve), even though negative emissions are physically impossible.

22 They appear in practice because the transport term, which includes a derivative, can be negative. In calculated
23 emission densities, negative pixels of low absolute value are as numerous as positive pixels of the same amplitude;
24 they correspond to numerical noise and are found in pollution-free zones where the sink term is virtually zero. Higher
25 values for negative pixels are less frequent: we count about 4 times less pixels with emission densities lower than -0.2
2 Pmolecules.cm™2.h~! than pixels with emission densities higher than 0.2 Pmolecules.cm™2.h~! (yellow and red parts
2w of the graph in Figure 4). The locations where such high values are observed for negative pixels correspond to areas
28 close to anthropogenic sources of NOy, but in situations for which the absolute transport term has been overestimated
29 or the sink term has been underestimated. Such negative emissions are limited to rare cases, such as Tehran, which
20 will be discussed in Section 4.2.
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Figure 3: TROPOMI-derived mean daytime NOy emission rates in 2022 estimated with the flux-divergence method for North America,
South America, Sub-Saharan Africa, Europe and North Africa, East Asia, Oceania, Middle East and Central Asia.

suoIssnosIq



Earth System
Science

Data

https://doi.org/10.5194/essd-2024-410
Preprint. Discussion started: 30 October 2024
(© Author(s) 2024. CC BY 4.0 License.

Open Access

Global emissions - Average in 2022

106  — Positive value
—— Negative value

105

Number of pixels
g

Noise - Zero emissions

Residual Low
emissions  emissians

10° |
10°° 10°° 107* 1072 1072 1071 10° 10t 10?
Absolute value of emissions (10'> molecules.cm~2.h")

Figure 4: Distribution of positive and negative TROPOMI-inferred NOy emissions for year 2022. Four regimes can be distinguished (the
values defining the thresholds between these regimes are given as order of magnitudes).

.1 3.2  Diffuse sources and point sources

22 The assimilation of high-resolution observations with the flux-divergence method holds a significant potential for
23 pinpointing emissions at small scale. As a consequence, it reveals the difference between sources that emit pollutants
24 from a localized area, called point sources, from diffuse sources emitting pollutants over a wider area, such as sprawling
25 urban regions like megacities. While the extent of the observed NOs pollution created by a point source is primarily
xus determined by advection and turbulent mixing, the spread of the pollution for a diffuse source is above all determined
27 by the spatial extent of the source itself. Point sources are therefore characterized by a dominance of the transport
xus  term, while diffuse sources (the term "area sources" is also used) exhibit a balance or dominance of the sink term
20 (Beirle et al., 2019). Within the flux-divergence method, these two types of sources can be identified differently, since
»0  the main sources of uncertainty come from wind angle in the case of a point source while they come from the OH
1 concentration explaining the sink term for a diffuse source. Because this distinction remains qualitative, to classify a
»  detected source as one or the other type, arbitrary thresholds must be defined, concerning the number of pixels above
»3  a certain value of emissions, or the share of the transport term within the emissions in Equation 5. Here, we catalog all
x4 sources in the averaged emissions map for 2022. Firstly, we define a source as a cluster of at least 3 contiguous pixels
25 above the value of 2 Pmolecules.cm™2.h~!. We then classify these sources as "point" or "diffuse" according to the
26 number of pixels in the detected cluster: point sources being the clusters comprising 3 to 9 pixels, and diffuse sources
27 those with more than 10 pixels. We detected 456 point sources and 330 diffuse sources, whose locations are displayed
s on Figure 5. The detailed distribution is given in Supplementary Materials and in Rey-Pommier et al. (2024).

Figure 5: Location of different point sources in blue (between 3 and 9 contiguous pixels above 2 Pmolecules.cm™2.h~1) and diffuse sources
in red (more than 10 contiguous pixels) for 2022.
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3.2.1 Diffuse sources

Most point sources correspond to facilities such as power stations, cement kilns or mining sites. They can also
correspond to concentrated urban areas. Conversely, almost all diffuse sources correspond to urban areas of megacities,
whether they comprise industrial facilities within their extent or not. Exceptions concern mega-emitters like the Medupi
and Matimba power plants in South Africa, mentioned in various articles (Reuter et al., 2019; Hakkarainen et al.,
2021; Cusworth et al., 2023) or the Ain Sokhna industrial area in Egypt, already mentioned in Rey-Pommier et al.
(2022). In both cases, such groups of industrial facilities exhibit particularly high emissions over more than 10 pixels
and are detected as diffuse sources. Figure 6 displays the emissions of diffuse sources corresponding to megacities:
Baghdad (32.9 t.h~1, 198 pixels), Istanbul (16.3 t.h=1, 132 pixels), Mexico City (17.4 t.h=1, 111 pixels), Moscow (20.4
t.h™1, 180 pixels), Riyadh (33.1 t.h~!, 172 pixels) and Shanghai (102.0 t.h~!, 837 pixels). Table 1 shows the 20 diffuse
sources with the highest emissions.

NO, emissions in Baghdad (2022) NO, emissions in Istanbul (2022)
34.1°N 418°N
337°N 41.4°N
N
]
333N < 41°N
329°N 40.6°N
4lf— 1
325°N 4 402°N
43.5°E 43.9°E 44.3°E 44.7°E 45.1°E 28.1°E 28.5°E 28.9°F 29.3°E 29.7°E
12
NO, emissions in Mexico (2022) NO, emissions in Moscow (2022)
20.1°N 56.5°N
|
9

19.7°N 56.1°N

19.3°N 55.7°N

NO, emissions (10> molecules.cm™2.h~1)

18.9°N 55.3°N 0
[ ]
-3
18.5°N 54.9°N
99.9°W 99.5°W 99.1°W 98.7°W 98.3°W 36.7°E 37.1°E 37.5°E 37.9°E 38.3°E
NO, emissions in Riyadh (2022) NOy emissions in Shanghai (2022) -6
25.4°N —

25°N

24.6°N

24.2°N

23.8°N 0.
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Figure 6: Map of mean daytime TROPOMI-inferred NOy emissions for 2022 for six megacities (diffuse sources), clockwise: Baghdad,
Istanbul, Moscow, Shanghai, Riyadh, and Mexico City. The approximate boundaries of the cities are denoted with dashed lines and the
location of power plants and cement plants are denoted with circles and squares respectively, except for Shanghai (unavailable data).
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oo These six diffuse sources differ greatly from one another: Baghdad, Mexico City and Riyadh are very dense and
on isolated, allowing their emissions to stand out from the rest of the hotspots, while Moscow and Istanbul are less
a2 dense, resulting in lower emission densities. The Shanghai urban area has a large spatial extent, and the associated
a3 cluster extends over an area much wider than the city limits. Finally, it should be noted that Moscow and Shanghai
am - experience many cloudy days, resulting in a fairly low level of averaging, leading to numerical noise that is visible
a5 on the maps. Our averaging also explains the absence of high annual emissions due to wildfires in our analysis.
a6 At a lower temporal scale however, wildfire emissions display an annual variability without significant outliers. The
o7 example of the rainforest in the Congo basin is studied in the Supplementary Materials, with emissions higher than
25 the 2 Pmolecules.cm™2.h~! threshold during summer (JJA).

Number of Latitude | Longitude | Mean emission density | Output Emitt
pixels in cluster (°N) (°E) (Pmolecules.cm™2.h~1) | (t.h™1) roitter

2818 37.527 116.010 2.827 235.03 Beijing urban area, China

837 31.283 120.352 3.834 102.01 Shangai urban area, China

439 35.549 51.329 7.089 94.19 Tehran urban area, Iran

552 -26.406 28.739 4.266 78.45 Gauteng coal region, South Africa
425 22.798 113.630 3.721 54.22 Shenzen & Hong-Kong urban area, China
361 29.653 31.126 4.127 48.16 Cairo & Beni Suef urban area, Egypt
303 29.582 47.874 4.555 44.64 Kuwait City urban area, Kuwait

172 24.649 46.797 5.695 33.12 Riyadh urban area, Saudi Arabia
198 32.771 44.298 5.319 32.94 Baghdad urban area, Iraq

274 41.174 123.033 4.286 32.88 Anshan urban area, China

353 39.338 110.656 2.986 30.32 Ordos mining region, China

224 37.162 126.874 4.312 28.63 Seoul urban area, South Korea

171 25.316 55.342 4.809 27.65 Dubai urban area, United Arab Emirates
157 32.577 51.610 4.860 23.92 Ispahan urban and industrial area, Iran
127 21.115 39.309 4.916 21.66 Djeddah urban area, Saudi Arabia
219 37.317 112.087 3.173 20.56 Shanxi urban area, China

180 55.715 37.501 5.395 20.35 Moscow urban area, Russia

102 24.118 82.747 5.530 19.15 Jogi Chaura industrial zone, India
154 39.329 106.809 4.258 18.87 ‘Wuhai/Hainan industrial zone, China
83 -12.183 -76.853 6.189 18.68 Lima urban area & Pachamac mines, Peru

Table 1: List and location of the 20 diffuse sources with highest TROPOMI-inferred NOx emissions, and corresponding size of the cluster
and main sector responsible for the emissions.

a0 3.2.2 Point sources

20 With a manual verification of the 456 detected point sources, we identify 61 outliers, 30 of which being points in
s places totally empty from any anthropogenic activity, and 31 points in areas with anthropogenic activity but without
22 significant source (no facility of significant size). Most of these outliers are located in high-latitude regions, with 34 of
23 them being located north to the 50°N parallel.

264 Because a threshold has been introduced in the classification of emitters, sources classified as "point sources"
x5 are isolated from other emitters, and their emissions constitute a peak in the displayed map. With a threshold
2 set at 2 Pmolecules.cm™2.h~!, the corresponding signal-to-noise is generally high enough to perform a peak-fitting
27 around the source. Since the observed spread of the emissions around the source is given by turbulent diffusion, we
28 try to fit a 2D-Gaussian function on the detected point sources over a zone of 14 x 14 pixels around the detected
20 maximum emission density within the corresponding cluster. Three examples are shown for the city of Medina, Saudi
20 Arabia, the Shar Industrial zone, Oman and the Western Mountain power plant, Libya on Figure 7. Note that these
201 locations correspond to point sources well-isolated from other industrial activities, in countries with frequent cloud-free
22 conditions that allowed an averaging over a high number of days in 2022.

203 We acknowledge the fact that the value of 2 Pmolecules.cm™2.h~! to mark the limit between high and low
24 emissions is arbitrary, as other values for this threshold could be used. For instance, the Beijing cluster, identified on
25 Table 1, with a size of 2818 pixels respectively, is broke down into 31 smaller clusters (12 diffuse sources and 19 point
26 sources) when changing the threshold from 2 Pmolecules.cm™2.h™! to 3 Pmolecules.cm™2.h~!. These new clusters
27 represent better urban sprawling around the various megacities and industrial facilities in Eastern China. However, in
28 the same regions, three point sources disappear when performing this threshold change. Such differences are displayed
29 in the Supplementary Materials. To determine the sensitivity of the point source and diffuse source detection and
s0  classification method, we carry out the detection by changing this threshold from 2 Pmolecules.cm™2.h~! to 3 and 4
s Pmolecules.cm™2.h~!'. The point sources and diffuse sources are identified, and a fit with a 2D-Gaussian is carried
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;2 out on point sources to estimate better emissions by accounting for the Gaussian nature of turbulent diffusion around
s the source. We then count the number of point sources with a fit of correct quality (with a correlation coefficient R?
s« higher than 0.4). The results are shown in Table 2 for the different thresholds, and we compare the countries with the
s most point sources. Note that among the 61 outliers identified in the detected point sources with the threshold of 2
56 Pmolecules.cm™2.h™!, only 10 reached a value of R? higher than 0.4.

(a) Medina City, Saudi Arabia

Location : 24.4438°N, 39.6062°E (Saudi Arabia)

(b) Sohar industrial zone, Oman

Location : 24.4938°N, 56.5812°E (Oman)

(c) Western mountain power station, Libya

Location : 31.9688°N, 11.1406°€ (Libya)

5

Ely) =8+ i expl5 2 exp(U2)

Rt = 092026
Xo =06k yo =42km 0, =109k : 0, = 97 km
=07 kgkm 01 £ = 1961 ko h™h

Bl =B+ 5 expl 5 exp U5

&2 = 089398

o= 37km 10, = 8.3 km 0,
5= 020 kgkm L1 o = 2046 kgL

Ey) =8+ s expl

Jexp(540)

A7 = 094599

o= 4.4km; o= 01 km 0, = 72 km: 0, = 5.4 km
=015 kgkm L £ = 1193 ka

Figure 7: Calculated mean daytime NOyx emissions in 2022 for point sources (left) and fitted emissions using a 2D-Gaussian function (right)
for the city of Medina, Saudi Arabia (a), the Sohar Industrial Zone, Oman (b) and the Western Mountain power plant, Libya (c).

Threshold value 2 Pmolecules.cm™2.h~! | 3 Pmolecules.cm~2.h~! | 4 Pmolecules.cm~2.h~!
Number of point sources 456 303 172
Point sources with R > 0.4 | 237 189 114
China 24 27 18
India 37 33 22
Russia 23 18 12
United States 18 6 3
Tiirkiye 7 6 1
Iran 7 9 9
Saudi Arabia 5 5 5
Japan 2 5 4
Egypt 3 2 4
Germany 6 3 1
Iraq 5 5 2
Mexico 7 5 3
Algeria 5 2 0
Pakistan 5 1 2

Table 2: Analysis of the number of point sources detected as a function of the threshold applied for cluster detection, and the number of
point sources whose fit with a 2D-Gaussian was of acceptable quality (R? > 0.4). Countries with at least 5 point sources with one of the

thresholds are displayed.
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7 As seen with the example of Beijing, moving to a higher threshold can reduce the number of point sources by not
w8 including some emitters with lower emissions, but it can also increase the number of detected point sources by
30 reducing the number of pixels corresponding to the cluster and moving certain emitters from the "diffuse source"
s category to the "point source" category. For example, with a limit of 2 Pmolecules.cm™2.h~!, the group of the Ras
s Laffan power stations in Qatar does not appear as a point source because its emissions are associated to a greater
sz cluster corresponding to a diffuse source which includes the nearby Doha megacity. Conversely, with limits of 3 or
s 4 Pmolecules.cm™2.h~!, these power plants appear as a point source, and a good quality Gaussian fit provides their
s total emissions of 1.69 t.h™1, close to the value of 1.86.h~! reported for the four-year average between 2019 and 2022
s in Rey-Pommier et al. (2023). Finally, it should be noted that lowering the threshold to 1 Pmolecules.cm™2.h~! also
36 reduces the number of diffuse sources because several nearby urban areas become linked by residual emission zones
a7 into a single, larger, diffuse source. Conversely, lowering the threshold detects a very large number of source points,
sus but many of these additional points are outliers. In the rest of the study, we therefore choose to keep the lowest
a0 value of the threshold, i.e. 2 Pmolecules.cm™2.h~!, to optimise the number of correct emitters we work with. These
20 emitters account for a total output of 2,388 t.h™! (370 t.h~! for point sources and 2018 t.h~! for diffuse sources).
s1 This represents about 17% of all emissions with densities higher than 0.2 Pmolecules.cm™2.h~! (with a total output
s of 14,335 t.h™!). As urban areas with more than 1 million inhabitants gather around 16% of the global population
s23 (Zimmer et al., 2023), this share of emissions from point and diffuse sources seems consistent with the detection limit of
324 the flux-divergence method using TROPOMI retrievals, as urban areas lower than 1 million inhabitants are generally
s not detected as diffuse sources here.

26 The full list of the 456 point sources and 330 diffuse sources are given in Supplementary Materials. This list can
s be compared with the catalog provided by Beirle et al. (2023). Of the 237 point sources for which the Gaussian fit
»s is of correct quality (with R? > 0.4), 144 also appear in their catalog. For these points, we generally obtain higher
20 emissions (with a median of 409 t.h~! and an average of 479 t.h~! in our case, whereas they have a median of 296 t.h 1
s and an average of 344 t.h™1). The two datasets have no particular reason to exhibit any clear correlation because they
s concern different years, and because while their approach focused on monthly averages, ours presents annual averages.
s For example, a site designated as a point source by Beirle et al. (2023) might not be detected if averaged over a whole
33 year, especially if it stays inactive during certain periods. For instance, their catalog shows 187 occurrences where the
sa  signal of NOy emissions was significant for 6 months out of 12, and 348 occurrences for 5 months.

= 3.3 National and regional outputs and comparison with bottom-up emissions

35 We perform an analysis of emissions at the scale of countries by comparing them to the NO, emissions provided by
3w EDGARv6.1 for 2018. For our TROPOMI-inferred emissions, we calculate the total mean NOy output, representing
38 daytime emissions for 2022, for each country using country masks at the 0.0625°x0.0625° resolution. To avoid any
39 over-estimation of the total output due to a very high number of pixels with very low emissions, we exclude from
s the calculation pixels with emission densities below 0.2 Pmolecules.cm™2.h~!. For emissions in EDGARV6.1, we sum
s the gridded emissions, representing monthly averages in 2018, for all sectors covered by the inventory and calculate
s the average flux for the year 2018. The output for each country is calculated using country masks at the 0.1°x0.1°
a3 resolution. In both cases, we include pixels that directly touch coastlines because marine regions close to the shore
us  see anthropogenic emissions spread due to turbulent diffusion. This can result in over-estimating total emissions for
us smaller countries, especially those with low emission densities. In order not to account for such outliers, we exclude
ss  countries with a population lower than 300,000 inhabitants or with a size lower than 1,000 km? from our analysis. This
w concerns many insular countries in the Caribbean and the Pacific, as well as micro-states like Andorra or Singapore.
us  Figure 8 shows the country-wise comparison, covering 164 countries, and Table 3 provides a comparison at the scale
us  of eight different macro-regions: Europe, North America and the Caribbean, South America, Middle East and North
30 Africa, Former USSR countries, Oceania, Sub-Saharan Africa and the rest of Asia.

351 TROPOMI-inferred emissions are generally close to EDGAR estimates for high income level countries or countries
3 with a majority of sources located in areas with high observation densities. This is the case for the three largest emitting
13 countries, China, the United States and India, with TROPOMI-inferred emissions 11, 16 and 6% lower than EDGAR
¢ estimates respectively. These three countries account for 44% of global emissions. However, for the fourth highest
5 emitting country, Russia, we estimate emissions 79% higher than EDGAR. We interpret this discrepancy as due to the
6 low density of observations there, which leads to errors in calculating emissions over a large area. This is consistent
7 with the large discrepancies found for many countries that also have low observation densities. The other countries
s for which the difference between our emissions and the EDGAR estimates is significant are low-income countries.
30 It is possible that the sources there are small and difficult to detect with our method; it is also possible that the
w0 corresponding EDGAR estimates are imprecise, due to the incomplete or outdated nature of the reported sources in
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these countries. The macro-regions with the highest discrepancies are thus Sub-Saharan Africa and the former USSR.
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Figure 8: Comparison between TROPOMI-inferred daytime NOx emissions for 2022 and mean emissions from EDGARv6.1 in 2018 for all
countries, classified by macro-regions.

At the global scale, our TROPOMI-inferred daytime emissions for all considered countries (i.e., excluding emissions
which take place at sea and in smaller countries) reach a total value of 11,209 t.h~!. This value is consistent with
that of EDGAR at 12,243 t.h™!, i.e around 107 Mt per year, close to the value of 123 Mt calculated by Stocker (2014)
for global anthropogenic emissions in 2000 (which include shipping and aircraft emissions). We should however note
that our TROPOMI-inferred emissions only represent daytime emissions taken around 13:30 LT, which are generally
lower during mid-day than other times of the day, where pollution peaks in the early morning and late afternoon are
reported for most trafic in many cities and for power generation (Menut et al., 2012). Conversely, emissions during

daytime are generally much higher than nighttime emissions.

Relative bias Mean absolute
Region 2’1(;1:2{20{;01“5411) ZOE].HSD?t:l}l) VS EDGAR error VS EDGAR
) ) (weighted average) | (unweighted average)
Subsaharan Africa 656 702 -6.5 % 90.2%
Rest of Asia 4424 5482 -19.3 % 49.3%
Europe 842 1092 -229 % 38.7%
Middle East & North Africa 1509 1125 34.2 % 49.0%
North America & the Caribbean | 1729 1944 -11.0 % 48.9%
Oceania 104 282 -63.2 % 52.6%
South America 512 762 -32.8 % 53.4%
Former USSR 1433 856 67.6 % 74.8%
Total 11209 12243 -84 % 60.6%

Table 3: Comparison between TROPOMI-inferred daytime NOx emissions for 2022 and mean emissions from EDGARv6.1 in 2018 for

macro-regions.

calculated. The mean absolute bias for all countries of these macro-regions is also calculated.

3.4 Temporal distribution and averaging size

For each macro-region, the relative bias between total TROPOMI-inferred emissions and total EDGAR emissions is

The results presented so far concerned daytime emissions averaged on the entire year 2022 (at around 13:30 local
time for each pixel). They therefore show a certain potential for mapping the sources of pollution, quantifying the
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s corresponding emissions and characterising their type (by size and country or region). Several studies have shown the
s possibility to characterise a weekly cycle of NOy emissions (Stavrakou et al., 2020; Rey-Pommier et al., 2022). The use
a5 of geostationary satellites, such as the Geostationnary Environment Monitoring Spectrometer (GEMS) in East Asia
s (Kim et al., 2020), the Tropopheric Emissions Monitoring of Pollution (TEMPO) in North America (Zoogman et al.,
s 2017) and Sentinel-4 (launch planned in September 2024) in Europe (Gulde et al., 2017), could also prove promising
ais for characterising the daily cycle of emissions, which would significantly improve forecasting capabilities. In our case,
s TROPOMI can only monitor pollution on a daily basis provided that retrievals are of high quality, and the analyses
0 presented so far could theoretically be carried out at this temporal resolution. In practice however, the high sensitivity
s of the method to wind direction and the low signal-to-noise ratio around sources at high latitudes leads to daily
3 emission maps that are very noisy in most cases, making it difficult to monitor activity at this temporal resolution.
3 Averaging is therefore required to limit noise effects and limit the uncertainties associated to emission estimates. Here,
s we try to evaluate what level of averaging is necessary to limit noise effects and allow a monitoring of emissions. To
35 this end, we consider the average daily emissions obtained for 2022 (i.e. over a maximum of 52 weeks) to be the most
w6 accurate estimate of daytime emissions. We compare this maximum averaging value with averages based on a smaller
s7  number of estimates. We compare the emissions of various emitters, calculated with an averaging period of 12, 24, 36
s and 48 weeks. Figure 9 shows the results for diffuse sources, which are all urban areas, but with different latitudes,
0 populations, levels of development and energy mixes: Ankara (Turkey), Cape Town (South Africa), Madrid (Spain),
s0  Portland (United States), Chaguanas (Trinidad and Tobago), Saint Petersburg (Russia), Manila (Philippines) and
sn Muscat (Oman). Figure 10 shows the results for the source points, which are industrial facilities in Egypt, Australia,
s Mexico, Chile, India and Germany. The sources were chosen for their relative isolation from other sources. Calculated
33 emissions correspond to the sum of pixels around the source with densities greater than 2 Pmolecules.cm™2.h~!. There
s are two pitfalls to be avoided in this comparison:

305 - The first pitfall would be not to account for the seasonal cycle of emissions, which is very pronounced in some
306 cases, and to compare chronological averages. For example, comparing the first 12 weeks of the year with the
307 first 24 weeks of the same year would not make sense in terms of the difference with emissions averaged over
308 the whole year, because in the first case, emissions would essentially be calculated in boreal winter, whereas in
300 the second case, emissions would be included during spring and summer. To avoid this seasonal bias, emissions
400 averaged over 12 weeks correspond to an average over the first week of each of the 12 months of 2022, and
a01 emissions averaged over 24 weeks correspond to the first two weeks of these same 12 months, and so on.
402 - The second pitfall would be not to account for the weekly cycle of emissions. NOy emissions are generally lower
403 at weekends due to a reduction in human activity in most areas (i.e. on Saturday and Sunday, or Friday and
404 Saturday in most Arabian and North-African countries). It is therefore necessary to ensure that the proportion of
a0 weekend days and weekdays in each of the averages calculated remains the same, hence the interest in averaging
06 by weeks (these proportions are therefore 2/7 and 5/7 respectively). We also carry out a final set of averaging
a07 over 24 days, i.e. 2 days per month. Since the seasonal effect (first pitfall) is generally stronger than the weekly
408 bias (second pitfall), we therefore choose to retain the principle of selecting the same number of days in each
409 month, even if it means making comparisons between averages where the weekend and weekday rates differ by
410 2/7 and 5/7. This last averaging set will be indicated as "irregular".
4.5
m 24 days (irregular)
a0 = Tesams
252 days
. 35 336 days
‘f_i 3.0
Sas
£
2.0
)
= 15
8
1.0
) L [ L
00 Ankar; (TUR) Cape TO‘Wn (ZAF) Madril; (ESP) Portlan‘d (USA) Chaguan‘as (TTO) Saint Peter;burg (RUS) Mamla‘ (PHL) Muscat (OMN)

Figure 9: NOy emissions for 8 different urban areas (diffuse sources), averaged over a period of 24, 84, 168, 252 and 336 days, evenly
distributed throughout the year. The proportion of weekend days and weekdays is identical in all the averaging sets except the first one of
24 days.
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Sinai White & Alarish Morwell & Loy Yang  Central Termoeléctrica ~ Minera Escondida (CHL) Tuticorin Thermal Boxberg Thermal
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Total NO, emissions (t.h~1)

Figure 10: NOy emissions for 8 different industrial facilities (diffuse sources), averaged over a period of 24, 84, 168, 252 and 336 days,
evenly distributed throughout the year. The proportion of weekend days and weekdays is identical in all the averaging sets except for the
first set of 24 days.

a1 In the case of urban areas, the different averages uniformly distributed over time show a similarity in the emissions
a2 calculated over the time horizons for Ankara, Muscat, Cape Town, and, to a certain extent, Madrid. For these cities,
a3 the low cloud cover allows a high density of observations and optimal averaging. The 84-day averaging, and to some
as  extent the 24-day irregular averaging, seems sufficient for monitoring emissions. This is not the case for the other
as  urban areas studied, for which the observation density is lower, such as Manila, Saint Petersburg and, to a certain
a6 extent, Chaguanas. For these cities, emissions monitoring with averaging below 168 days (or even 252 days in the case
ar  of Saint Petersburg) is therefore limited by noise effects. In the case of the studied point sources, similar emissions
as  are observed after an 84-day averaging. In some cases, a 24-day averaging is also sufficient, while in others it is not.
a0 The representativeness of emissions on such a low level of averaging should be considered with caution, as emissions
w20 from industrial plants are always more irregular than those from cities, with the exception of power stations used for
21 baseload electricity generation. The averages over 84 days presented here represent emissions that include several days
w22 of activity and several moments of inactivity.

423 Overall, this analysis seems to indicate that tracking emissions from source points or diffuse sources using the
w2s  flux-divergence method requires an averaging effort to limit the noise obtained in the daily emissions. This averaging
w5 effort, which increases with the density of observations, is of about a month in countries with frequent high-quality
w6 observations, but of about a quarter in regions with low observation densities, such as tropical regions and high-latitude
427 Treglons.

» 4 Uncertainties and assessment of results

2 4.1 Model uncertainties

a0 Our top-down emissions are calculated here using a flux-divergence model, based on a simplified calculation of a
w1 transport term, a sink term and a conversion factor from NOs to NOy. This simplicity reduces the computation time
a2 to calculate emissions and the dependence on external datasets, at the cost of increased model uncertainties. Here,
a3 although a "topography-wind" term has been introduced in this article to refine the transport term, the sink term
s remains simple and only represents the reaction between NOs and OH. While this reaction is the first contributor
a5 of NOy loss, other sinks may be significant. For instance, organic peroxy radicals can oxidise NOy to form peroxy
s nitrates, making the corresponding sink important in the presence of VOCs (Stavrakou et al., 2013), especially in
s biomass fires. In different conditions, the formation of peroxyacetyl nitrate from NOo (Moxim et al., 1996), can also
s contribute to a significant share of the NOy loss.

439 Another model uncertainty comes from the calculation of the conversion of NOy production to total NOy. The
wuo majority of NOy is emitted in the form of NO, which is not observed from space. A common assumption is that NO
s is rapidly transformed into NOy through its reaction with ozone, reaching a stationary state within a few minutes.
w2  Numerous studies (Beirle et al., 2019; de Foy and Schauer, 2022) assumed a photostationary state in typical urban
w3 conditions and used a ratio of 1.32 based on Seinfeld and Pandis (2006). Here, the values of this ratio calculated
ws from CAMS data did not differ much from this value. However, the photostationary state is a hypothesis which is
ws  potentially not verified on the scale of a NOy source like a power plant stack. Li et al. (2023b) calculated values of
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ws  this conversion ratio correlated with the combustion temperature and energy efficiency for sources in China that are
w7 highly intensive in energy such as power plants, and found a median value of 3.3. Biases in the calculation of the
us  NOx:NOg ratio can also arise in highly polluted environments, in which the Leighton relationship used to calculate
we  this ratio is no longer valid. In particular, OH can also react with VOCs and form oxygenated VOCs. Further studies
w0 estimating this ratio at various spatial and temporal scales would thus provide a better implementation of our model.

s 4.2 Data uncertainties

2 The NOy column densities are the main input quantity in our estimation of NOy emissions, making the its calculation
ss3 within the TROPOMI product the first element to examine when considering the data uncertainties in our estimates.
ss Columns are calculated from measurements of solar backscattered radiation and comparison with a specific UV-Visible
ss  band using the Differential Optical Absorption Spectroscopy method, before being assimilated to derive a tropospheric
w6 vertical component. The corresponding uncertainty under polluted conditions is dominated by the sensitivity of
7 satellite observations to air masses near the ground, and is expressed through the calculation of the tropospheric air-
s mass factor (AMF). To assess the significance of such effects, vertical profiles within the TROPOMI product can be
0 replaced by any other profile information, resulting in a new retrieved tropospheric NOy column. Douros et al. (2023)
w0 replaced the a priori TROPOMI OFFL NO, profile by high-resolution air quality forecasts for Europe. As compared
w1 to the standard TROPOMI NO, data, this new product was found to be biased-low by 5% to 12% for most European
w2 cities. The air mass factor (AMF) itself can be replaced: for instance, Lama et al. (2022) re-calculated the AMF
w3 by replacing the tropospheric AMF of the original TROPOMI OFFL product by an AMF taken from WRF-Chem
s simulations. Similarly, Beirle et al. (2023) re-calculated the AMF above different emitters from the corresponding
w5 averaging kernel based on a peak profile at plume height to better reflect the distribution of NO2 close to ground,
ws  which resulted in an AMF correction of about 1.61. Here, we did not perform any of such corrections, and we consider
wr  a relative uncertainty for the column of 30% (Boersma et al., 2004), consistent with S-5P validation activities which
s indicate that TROPOMI tropospheric NOy columns are systematically biased low by about 30%-50% over cities
w0 (Verhoelst et al., 2021). Such a bias seems to run counter to our comparison with the catalog by (Beirle et al., 2023),
a0 for which this change in sensitivity was performed but leading to emissions generally lower than ours. A more detailed
an analysis of the concerned emitters seems necessary to better understand the parameters that have the largest impact
a2 on the vertical sensitivity of TROPOMI retrievals and our inversion model.

73 Other data uncertainties can arise from other parameters that play a crucial role in the estimation of advection
an and chemistry effects. An accurate representation of the wind is critical to estimate the transport term correctly.
a5 For a given plume, the poor representation of wind speed leads to an under-or over-estimation of transport, but the
as  correct orientation of positive and negative values around the source remains. However, an incorrect representation
a7 of the wind direction, such as a non-alignment with the main direction of the plume, fails to represent a correct
w8 orientation of positive and negative values. The estimation of the transport term significantly thus relies heavily on
ao the representation of the wind angle. Higher errors are therefore expected to be high in regions having winds that
a0 vary rapidly in time, or regions with complex horizontal wind variations, such as mountainous regions. In particular,
w1 situations where sub-grid scale-phenomena occur, not accounted for in ERA5 wind fields, might display even higher
w2 errors in the estimation of transported NOy. For instance, Tehran, Iran, has an extremely complex topography,
w3 and in the calculated emissions, the transport term is particularly high compared with the sink term, with high and
s unrealistic negative values on large scales around the Tochal mountain immediately to the north of the city. Other
w5 megacities such as Seoul, South Korea, Jeddah, Saudi Arabia, Chittagong, Bangladesh, also exhibit unrealistically
s high values for the transport term. Such errors in the estimation of emission can also come from a wrong estimation
w7 of the air composition when calculating the sink term. The NOs lifetime relies heavily on the representation of the
ws  OH concentration field, which varies with NOy itself through a non-linear mechanism. An incorrect representation
a0 of the sink term can occur at the scale of a plume by not capturing this relationship due to an incorrect knowledge
w0 of emitters on the ground. This can also be due to the 0.4°x0.4° resolution of CAMS that do not always capture
w1 the NO2 gradients adequately in plumes near a known emitter (Valin et al., 2011; Li et al., 2023a). For the OH
w2 concentration, a relative uncertainty of 30% has been used (Huijnen et al., 2019), representing the largest component
w3 of absolute uncertainty apart from the vertical columns. Large errors in the annual cycle of OH, and therefore in the
w4 sink term, can thus be expected. As a consequence, a wrong estimation of wind angle and OH concentration can lead
w5 to unrealistically high emissions, or even negative emissions.
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« B Conclusion

w7 In this study, we present a global quantification of NOy emissions by performing a mass-balance inversion based on
ws  the flux-divergence method, based. This approach offers a rapid alternative to traditional 3D inversion methods using
w9 Chemical Transport Models. The foundation of this method lies in the observation of tropospheric vertical column
s densities of NOg provided by TROPOMI. Our methodology incorporates several components in the calculation of
s emissions: a transport term driven by horizontal wind, a sink term largely driven by OH concentrations, and a
s2  topography-wind correction term. The emissions calculated represent mean daytime fluxes for the year 2022, allowing
s03  us to map emissions on a global scale. The results highlight that the primary sources of NOy emissions are industrialized
su and developing countries. Our emission estimates are consistent with global estimates, as well as the EDGARv6.1
ss inventory, though notable discrepancies are observed at the national level, particularly in former USSR countries
sos  and sub-Saharan Africa. Besides, we performed a pinpointing of emitters by distinguishing between diffuse sources,
sor  typically large metropolitan areas with extensive spatial distribution (456 identified emitters), and point sources,
se  generally isolated industrial facilities with emissions that often exhibit a Gaussian spread. 456 diffuse sources and 330
s0  point sources are identified. Significant uncertainties remain, especially in regions where OH is not the only source of
s NOy removal, regions where wind representation is inaccurate, and regions where TROPOMI data exhibit substantial
s biases. Nonetheless, our work demonstrates the feasibility of annual NOy emission monitoring with reduced latency
sz and fewer mis-allocation issues compared to traditional inventories. Our approach enables the monitoring of emissions
s13 - at the monthly scale in regions with high observation densities, that usually correspond to dry, mid-latitude countries.
siu Conversely, the effect of numerical noise, combined with low-observation densities, restricts such monitoring to a higher
sis averaging period of up to months, generally in tropical and high-latitude regions. Efforts should be made to further
sie develop this method to provide a near-real time monitoring tool a higher temporal resolution for these regions. The
si7 - results of this study were obtained from the calculation of daily NOy emissions in 2022 and their annual average.

= 6 Data availability
sv The monthly NOy emission maps can be accessed at https://doi.org/10.5281/zenodo.13957837 (Rey-Pommier

s0 et al., 2024). Data is made available as emission grid maps as .nc files with emissions expressed in petamolecules per
s1 square centimetre per hour (Pmolecules.cm™2.h~1). The lists of diffuse and point sources are also provided.

s2  Author contributions. AR analysed the data, prepared the main software code and wrote the paper. AH improved
53 some aspects of the code and prepared the code for Gaussian fitting. FC, PC, TC, JK and JS contributed to the
s improvement of the method and the interpretation of the results. All the authors read and agreed on the published
s version of the paper.
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